• Title/Summary/Keyword: Sulfur Oxides

Search Result 124, Processing Time 0.025 seconds

Variation Characteristics of TSP Ionic Compositions by Meteorological Phenomena in Jeju Island (기상현상에 따른 제주지역 TSP의 이온조성 변화 특성)

  • Ko, Hee-Jung;Kim, Won-Hyung;Lee, Seung-Hoon;Bu, Jun-Oh;Kang, Chang-Hee;Hu, Chul-Goo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.723-733
    • /
    • 2011
  • The ionic compositions were analyzed from the TSP samples collected at Gosan site in Jeju Island between 2000 and 2008, in order to examine the characteristics of atmospheric aerosols in accordance with the meteorological conditions. For the Asian Dust influence on the ionic compositions, the concentration ratios of $NH_4{^+}$, nss-${SO_4}^{2-}$, $NO_3{^-}$, and $K^+$ were about 1.2~2.3 during Asian Dust over Non-Asian Dust periods, noticeably that of nss-$Ca^{2+}$ was 6.8. Meanwhile the concentrations of nss-${SO_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$ have increased as 1.8~4.4 times during the haze event periods, and 1.0~1.6 times during the fog and mist events. The ion balance has resulted that the anionic concentrations are relatively lower than the cationic concentrations, and the discrepancy appears more decidedly as a strong Asian Dust effect. The ammonium ion balance has shown that it exists as a mixture of $NH_4HSO_4$ and $(NH_4)_2SO_4$. The concentration ratios of nss-${SO_4}^{2-}/NO_3{^-}$ for Asian Dust, haze, fog-mist, and non-event periods were respectively 1.8, 5.9, 4.6, and 2.9, which were higher values compared to those in urban areas of China as well as other domestic regions. Especially, the high ratios of sulfur oxides could be presumed by the fact that the longrange transport of air pollutants from Asia continent might affect the atmospheric aerosols of Jeju Island.

Field Gas-Sparging Tests for In Situ Aerobic Cometabolism of Trichloroethylene(TCE)

  • Kim Young;Istok Jonathan D.;Semprini Lewis;Oa Sung-Wook
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.54-56
    • /
    • 2006
  • Single-well-gas-sparging tests were developed and evaluated for assessing the feasibility of in-situ aerobic cometabolism of trichloroethylene (TCE), using propane as a growth substrate. To evaluate transport characteristics of dissolved solutes [sulfur hexafluoride (SF6) or bromide (non-reactive tracers), propane (a growth substrate), ethylene, propylene (nontoxic surrogates to probe for CAH transformation activity), and DO], push-pull transport tests were performed. Mass balance showed about 90% of the injected bromide and about 80% of the injected SF6 were recovered, and the recoveries of other solutes were comparable with bromide and slightly higher than SF6. A series of Gas-Sparging Biostimulation tests were performed by sparging propane/oxygen/argon/SF6 gas mixtures, and temporal ground water samples were obtained from the injection well under natural gradient 'drift' conditions. The decreased time for propane depletion and the longer time to deplete SF6 as a conservative tracer indicate the progress of biostimulation. Gas-Sparging Activity tests were performed. .Propane utilization, DO consumption, and ethylene and propylene cometabolism were well demonstrated. The stimulated propane-utilizers cometabolized ethylene and propylene to produce ethylene oxide and propylene oxide, as cometabolic by-products, respectively. Gas-Sparging Acetylene Blocking tests were performed by sparging gas mixtures including acetylene to demonstrate the involvement of monooxygenase enzymes. Gas substrate degradation was essentially completely Inhibited in the presence of acetylene, and no production of the corresponding oxides was also observed. The Gas-Sparging tests supports the evidences that the successive stimulation of propane-oxidizing microorganisms, cometabolic transformation of ethylene and propylene by the enzyme responsible for methane and propane degradation.

  • PDF

Fluid Inclusions of Daehwa and Donsan Tungsten-Molybdenum Deposits (대화(大華) 및 돈산(敦山) 중석(重石)·모리브덴 광상(鑛床)의 유체포유물(流體包有物))

  • Park, Hee-In;Choi, Suck-Won;Kim, Deog-Lae
    • Economic and Environmental Geology
    • /
    • v.18 no.3
    • /
    • pp.225-237
    • /
    • 1985
  • Mineralization of Daehwa and Donsan W-Mo deposits can be devided into three distinct depositional stages on the basis of mineral paragenesis and flnid inclusion studies; stage I, deposition of oxides and silicates ; stage II, deposition of base-metal sulfides and sulfosalts with carbonates; stage III, deposition of barren calcite and fluorite. Tungsten, molybdenum and tin mineralization occurred in stage I. Fluid inclusion studies reveal that ore fluid of stage I were homogeneous $H_2O-CO_2$ fluids containing 3.5~14.6 mol % $CO_2$. Minimum temperature and pressure of stage I ore fluids were $240^{\circ}C$ and 500 bars respectively. Salinities of aqueous type I inclusions in minerals of stage I range from 3.7 to 7.6 wt. % equi. NaCl. whereas those of $CO_2$-containing type III inclusions range from 0.3 to 4.4 wt. %. Temperatures of stage II ore fluids range from 200 to $305^{\circ}C$ on the whole and salinities were in the range of 3.2~7.2 wt. %. Homogenization temperatures of fluid inclusions in calcite and fluorite of stage III range from 114 to $186^{\circ}C$ and salinities were in the range of 0.9~4.3 wt. %. Sulfur fugacities during stage II deduced from mineral assemblages and tamperature data from fluid inclusions declined from earlier to later in the range of $10^{-11}{\sim}10^{-18}atm$. Fluid inclusion evidences suggest that the dominance of $CO_2$ in ore fluid during W-Mo mineralization is the characteristic features of Cretaceous W-Mo deposits of central district of Korea compared to those of Kyeongsang basin district.

  • PDF

Conversion Rate of Gaseous Ammonia to Particulate Ammonium During Atmospheric Transport (대기 수송중 암모니아의 암모늄염으로의 전환속도)

  • Kim Hui-Kang;Y. Hashimoto;Yong-Kuen Lee
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.88-94
    • /
    • 1982
  • The concentrations of gaseous ammonia and particulate ammonium emitted from a urea plan were measured, and the conversion rate of ammonia to ammonium was estimated. The conversion of ammonia to ammonium has two stages with transport time in the atmosphere. In the initial 15min the conversion rate was 3.2% min$^{-1}$, and thereafter 0.26% min$^{-1}$. The high conversion rate of ammonia to ammonium at the initial period of it's transport might be due to the dissolution of ammonia into water droplets formed by the decrease in temperature of the stack effluent. The concentration of ammonium is further increased by the decomposition of urea in alkaline droplet formed. Half-lives of ammonia gas at initial and latter slag were 16 min and 192 min respectively. No correlation of particulate ammonium concentration to temperature, relative humidity, and concentrations of sulfur dioxide, nitrogen oxides and airborne particulate matter were found in this field measurement.

  • PDF

Study on the Free CaO Analysis of Coal Ash in the Domestic Circulating Fluidized Bed Combustion using ethylene glycol method (에틸렌글리콜법을 활용한 국내 순환유동층보일러 석탄회의 Free CaO 평가 연구)

  • Seo, Jun-Hyung;Baek, Chul-Seoung;Kim, Young-Jin;Choi, Moon-Kwan;Cho, Kye-Hong;Ahn, Ji-Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • This study was carried out to physicochemical properties and free CaO contents of coal ash in domestic circulating fludized bed combustion power plant using ethylene glycol method. Results of physicochemical properties, there are many differences in CaO contents for the region position in CFBC plant. The reason, It is considered to be reflected that regulation of exhaust concentration for oxides of sulfur and other operation characteristics of region position in CFBC plant. Free CaO contents are 1.96 ~ 10.78% of fly ash and 0.07~4.24 % of bottom ash, fly ash is higher than in the bottom ash. besides CaO contents of raw materials, particle distribution have a lot of influence Free CaO contents.

Estimation of Ammonia Emission with Compost Application in Plastic House for Leafy Perilla Cultivation (시설잎들깨 재배의 퇴비 시용에 의한 암모니아 배출량)

  • Hong, Sung-Chang;Kim, Jin-Ho;Kim, Min-Wook
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.149-160
    • /
    • 2021
  • BACKGROUND: Concerns have been raised about the impact of recent high concentrations of fine dust on human health. Ammonia(NH3) reacts with sulfur oxides and nitrogen compounds in the atmosphere to form ultrafine ammonium sulfate and ammonium nitrate (PM2.5). There is a growing need for accurate estimates of the amount of ammonia emitted during agricultural production. Therefore, in this study, ammonia emissions generated from the cultivation of leafy perilla in plastic houses were determined. METHODS AND RESULTS: Cow manure compost, swine manure compost, and poultry manure compost each at 34.6 ton ha-1, the amount commonly used by farmers in the field, was sprayed on the soil surface. Just after spraying cow manure compost, swine manure compost, and poultry manure compost, the ammonia was periodically measured and analyzed to be 22.5 kg ha-1, 22.8 kg ha-1, and 85.2 kg ha-1, respectively. The emission factors were estimated at 70.0 kg-NH3 ton-N, 62.8 kg-NH3 ton-N, and 234.1 kg-NH3 ton-N, respectively. Most ammonia was released in the two weeks after application of the compost and then the amount released gradually decreased. CONCLUSION: Therefore, it is necessary to improve the emission factor through a study on the estimation of ammonia emission by type of livestock manure and major farming types such as rice fields and uplands, and to update data on the production, distribution, and sales of livestock manure.

A Study on Environmental and Economic Cost Analysis of Coal Thermal Power Plant Comparing to LNG Combined Power Plant (석탄화력발전대비 LNG복합화력발전 환경성 및 경제성 비용분석에 관한 연구)

  • Kim, Jong-Won
    • Asia-Pacific Journal of Business
    • /
    • v.9 no.4
    • /
    • pp.67-84
    • /
    • 2018
  • This study is about comparing coal thermal plant to LNG combined power plant in respect of environmental and economic cost analysis. In addition sensitive analysis of power cost and discount rate is conducted to compare the result of change in endogenous and exogenous variable. For environmental assessment, when they generate 10,669GWh yearly, coal thermal power plant emits sulfur oxides 959ton, nitrogen oxide 690ton, particulate matter 168ton and LNG combined power plant emits only nitrogen oxide 886ton respectively every year. Regarding economic cost analysis on both power plants during persisting period 30 years, coal thermal power plant is more cost effective 4,751 billion won than LNG combined taking in account the initial, operational, energy and environmental cost at 10,669GWh yearly in spite of only LNG combined power plant's energy cost higher than coal thermal. In case of sensitive analysis of power cost and discount rate, as 1% rise or drop in power cost, the total cost of coal thermal power plant increases or decreases 81 billion won and LNG combined 157 billion won up or down respectively. When discount rate 1% higher, the cost of coal thermal and LNG combined power plant decrease 498 billion won and 539 billion won for each. When discount rate 1% lower, the cost of both power plant increase 539 billion won and 837 billion won. With comparing each result of change in power cost and discount rate, as discount rate is weigher than power cost, which means most influential variable of power plan is discount rate one of exogenous variables not endogenous.

Hot Corrosion Properties of Heat Resistant Chrome Steels (내열강의 고온부식특성에 대한 크롬함량의 영향)

  • Lee, Han-sang;Jung, Jine-sung;Yoo, Keun-bong;Kim, Eui-hyun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.277-288
    • /
    • 2010
  • The hot corrosion properties of heat-resistant steels were investigated in an oxidation atmosphere including artificial ash and sulfur dioxide. The heat-resistant steels of T22, T92, T122, T347HFG, Super304H and HR3C were evaluated at 620, 670 and $720^{\circ}C$ for 400 hours. The relationship between the corrosion rate and the temperature followed a bell-shaped curve with a peak rate at around $670^{\circ}C$. The corrosion rates showed a decreasing tendency as the chrome contents of these steels increased from 2.15 wt.% to 24.5 wt.%, and austenitic steels had a lower corrosion rate than ferritic steels. Sulfidation by $SO_2$ as well as molten salt corrosion also had an effect on the total corrosion rate, especially showing an increase in the corrosion rate in ferritic steels. Regardless of the chrome content in the steels and irrespective of the test temperature, the corrosion scale was composed of an outer oxide and an artificial ash mixed layer, a middle oxide layer and inner sulfide, and a mixed oxide layer. As the chrome content increased, the proportion of chrome oxide in the corrosion scale increased. Before spalling of the corrosion scale, voids and cracks were initiated in the sulfide and the mixed oxide layer or at the interface with the substrate.

Monitoring of air Pollution on the Premises of the Factory Sharrcem - L.L.C

  • Luzha, Ibush;Shabani, Milazim;Baftiu, Naim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.214-222
    • /
    • 2022
  • In these proceedings, we will address the problem of air pollution on the premises of the Cement factory SHARRCEM L.L.C. in Hani Elezit in the Republic of Kosovo respectively around the clinker cooler, rotary kiln, and raw material mill. By air pollution, we mean the introduction of chemicals, particles, or other harmful materials into the atmosphere which in one way or another causing damage to the development of plants and organisms. Air pollution occurs when certain substances are released into the air, which depending on the quantitative level, can be harmful to human health, animals, and the environment in general. The analysis of air shows the influence of the extractive and processing industry on the chemical composition of air. Parameters analyzed though under control such as the case of carbon dioxide, due to the increasing production capacity of cement, the production of hundreds of thousands of cubic meters of CO2 gas made CO2 production a concern. With the purchase of the latest technology by the SHARCEM Factory in Hani Elezit, the amount of air pollution has been reduced and the allowed parameters of environmental pollution have been kept under control. Air pollutants are introduced into the atmosphere from various sources which change the composition of the atmosphere and affect the biotic environment.The concentration of air pollutants depends not only on the quantities that are emitted from the sources of air pollution but also on the ability of the atmosphere to absorb or disperse these emissions. Sources of air pollutants include vehicles, industry, indoor sources, and natural resources. There are some natural pollutants, such as natural fog, particles from volcanic eruptions, pollen grains, bacteria, and so on.

A Study on Application of Desulfurization Technology in Cement Production Process (시멘트 생산 공정 내 탈황기술 적용 가능성 연구)

  • Youmin Lee;Chae-wook Lim;Teawoo Lee;Hyung-Suhk Suh;Jun-Ho Kil
    • Resources Recycling
    • /
    • v.33 no.2
    • /
    • pp.3-15
    • /
    • 2024
  • Environmental awareness is rising worldwide. however, cement manufacturing facilities use recycled resources to improve raw material and fuel substitution rates, contributing to environmental issues such as waste disposal. The emission of sulfur oxides (SOx), an air pollutant, has been regulated by limestone as raw material in cement manufacturing. However, the impact of increasing use of recycled resources on future facility processes and environmental changes is unclear. Therefore, the cement manufacturing facilities require desulfurization-related technologies and research. In this study, we investigated the applicability of desulfurization technology to cement manufacturing facilities and demonstrated various approaches to applying this technology using byproducts generated in cement manufacturing.