• Title/Summary/Keyword: Sulfate Resistance

Search Result 239, Processing Time 0.023 seconds

A Hardening Properties of Eco-Friendly SCW Grouting Material (친환경 SCW공법용 그라우팅재의 경화특성)

  • Jo, Jung-Kyu;Park, In-Wook;Mun, Kyung-Ju;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.109-115
    • /
    • 2018
  • Since the current method of SCW cement milk pouring method uses one to one ratio of cement milk with OPC, there are some problems such as drying shrinkage, increased cost, difficulty of controlling mix proportions for various conditions of applied soil, and precipitation of $Cr^{6+}$ due to the excessively used cement. Specifically, in aspect of sustainability issues of cement manufacturing, the consumption of cement should be reduced. Hence, in this research, as a replacement of cement for SCW method, blast furnace slag with sulfate or alkali as a stimulant, and expansive admixture were used. By using blast furnace slag as a hardening composite of SCW, there are many advantages such as free controllable mix proportions, rapid setting time with less mud occurrence, less cost with less energy for mixing, constant strength development, and less precipitation of $Cr^{6+}$. Regarding the alternative composites for SCW, in this research, durability and chloride resistance were evaluated.

Effects of Salts on Rheological Behaviour of Salvia Hydrogels

  • Yudianti, Rike;Karina, Myrtha;Sakamoto, Masahiro;Azuma, Jun-ichi
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.332-338
    • /
    • 2009
  • Rheological behavior of natural hydrogel produced from seeds of three Salvia spp. (S. miltiorrhiza (SM), S. sclarea (SS), S. viridis (SV)) was investigated by using a Rheometer equipped with a cone and plate geometry measuring system under never-dried condition. Different chemical contents of such hydrogels give significant effects on their rheological properties. Because of incomplete penetration of water inside the hydrogels after drying before-dried hydrogels were used for rheological analysis. To know molecular interactions which predominated in the gel formation, some constituents were externally added to the 1.0% (w/w) hydrogel. Addition of urea to disrupt hydrogen bonds reduced 3.4-67% viscosity of the untreated hydrogels and changed viscoelastic properties from gel to liquid-like behavior. Neutral salts added to the hydrogel solution at 0.1 M also lowered the viscosity in a manner related with increase in size of cations and temperature. Changing from gel state to liquid-like state was also easily confirmed by oscillation measurement (storage, G', and loss, G", modulii) typically observed in the cases of potassium sulfate and potassium thiocyanate. Influence of pH variation on the viscosity explained that weak alkaline condition (pH 8-9) creates a higher resistance to flow due to increasingly electrostatic repulsions between negative charges ($COO^-$) Importance of calcium bridges was also demonstrated by recovery of viscosity of the hydrogels by addition of calcium after acidification. The summarized results indicate that electrostatic repulsion is a major contributor for production of hydrogel structure.

Glutathione Reductase from Oryza sativa Increases Acquired Tolerance to Abiotic Stresses in a Genetically Modified Saccharomyces cerevisiae Strain

  • Kim, Il-Sup;Kim, Young-Saeng;Yoon, Ho-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1557-1567
    • /
    • 2012
  • Glutathione reductase (GR, E.C. 1.6.4.2) is an important enzyme that reduces glutathione disulfide (GSSG) to a sulfydryl form (GSH) in the presence of an NADPH-dependent system. This is a critical antioxidant mechanism. Owing to the significance of GR, this enzyme has been examined in a number of animals, plants, and microbes. We performed a study to evaluate the molecular properties of GR (OsGR) from rice (Oryza sativa). To determine whether heterologous expression of OsGR can reduce the deleterious effects of unfavorable abiotic conditions, we constructed a transgenic Saccharomyces cerevisiae strain expressing the GR gene cloned into the yeast expression vector p426GPD. OsGR expression was confirmed by a semiquantitative reverse transcriptase polymerase chain reaction (semiquantitative RT-PCR) assay, Western-blotting, and a test for enzyme activity. OsGR expression increased the ability of the yeast cells to adapt and recover from $H_2O_2$-induced oxidative stress and various stimuli including heat shock and exposure to menadione, heavy metals (iron, zinc, copper, and cadmium), sodium dodecyl sulfate (SDS), ethanol, and sulfuric acid. However, augmented OsGR expression did not affect the yeast fermentation capacity owing to reduction of OsGR by multiple factors produced during the fermentation process. These results suggest that ectopic OsGR expression conferred acquired tolerance by improving cellular homeostasis and resistance against different stresses in the genetically modified yeast strain, but did not affect fermentation ability.

Transformation of Chinese Cabbage Glutathione Reductase (GR) gene into Lettuce (Lactuca sativa L.) with Particle Bombardment (유전자총을 이용한 상추 내로의 배추 Glutathione Reductase (GR)유전자의 도입)

  • 정재동;이부자;이효신;김창길
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.6
    • /
    • pp.475-478
    • /
    • 2000
  • The cytosolic glutathione reductase(GR) gene of chinese cabbage was introduced into Lettuce (Lactuca sativa L.) with particle bombardment method. When cotyledon explants were treated with osmoticum-conditioning medium (0.6 M sorbitol/mannitol) 4 hours prior to and 16 hours after bombardment, it was identified by GUS assay that this condition was the most efficient one for introduction of foreign genes into cotyledon tissue of lettuce with particle bombardment. The stable integration of a GR gene was confirmed by the PCR analysis. 0.3, 0.6, 1.5 kbp PCR fragments of transgenes were obtained by three types of primers designed on the basis of GR sequence. To know whether the expression of the GR gene of pBKs-GR 1 can be stably maintained in the next generation, T$_2$selfing seeds obtained from the transformed mother plants were sowed on MS medium supplemented with 200 mg/L kanamycin sulfate. 70% of seedlings showed resistance to kanamycin.

  • PDF

A New Salt-Tolerant Thermostable Cellulase from a Marine Bacillus sp. Strain

  • dos Santos, Yago Queiroz;de Veras, Bruno Oliveira;de Franca, Anderson Felipe Jacome;Gorlach-Lira, Krystyna;Velasques, Jannaina;Migliolo, Ludovico;dos Santos, Elizeu Antunes
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1078-1085
    • /
    • 2018
  • A salt-tolerant cellulase secreted by a marine Bacillus sp. SR22 strain with wide resistance to temperature and pH was purified and characterized. Its approximate mass was 37 kDa. The endoglucanase, named as Bc22Cel, was purified by ammonium sulfate precipitation, gel filtration chromatography, and extraction from the gel after non-reducing sodium dodecyl sufate-polyacrylamide gel electrophoresis. The optimal pH value and temperature of Bc22Cel were 6.5 and $60^{\circ}C$, respectively. The purified Bc22Cel showed a considerable halophilic property, being able to maintain more than 70% of residual activity even when pre-incubated with 1.5 M NaCl for 1 h. Kinetic analysis of the purified enzyme showed the $K_m$ and $V_{max}$ to be 0.704 mg/ml and $29.85{\mu}mol{\cdot}ml^{-1}{\cdot}min^{-1}$, respectively. Taken together, the present data indicate Bc22Cel as a potential and useful candidate for industrial applications, such as the bioconversion of sugarcane bagasse to its derivatives.

Evaluation of Durability and Self-clearing in Concrete Impregnated with Photocatalyst-colloidal Silica (광촉매-분산 실리카 함침 콘크리트의 내구성 및 정화성능 평가)

  • Kim, Hyeok-Jung;Kim, Young-Kee;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.47-54
    • /
    • 2018
  • Concrete undergoes various deterioration on surface. Impregnant with silicate is usually applied to concrete surface and forms insoluble hydrates, which can provide many engineering advantages. In the work, concrete impregnated with colloidal silicate is used for durability enhancement in surface and self-clearing performance is evaluated with photocatalyst-$TiO_2$ spraying. For the work, various tests are performed both for strength evaluation and durability evaluation such as absorption ratio, drying shrinkage, chloride penetration, sulfate resistance, and freezing/ thawing action. Furthermore, removal and self-clearing performance are evaluated with Acetaldehyde decomposition and Methylene blue decolorization. Through silicate impregnation and photocatalyst spraying, the impregnated concrete can have not only durability enhance but also self-clearing performance.

Effect of Sulfuric Acid Addition on the Aluminum AC Etching in HCl Solution (염산용액내에 황산 첨가에 의한 알루미늄의 교류에칭 특성)

  • Kim, Hangyoung;Choi, Jinsub;Tak, Yongsug
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.463-468
    • /
    • 1998
  • When sulfuric acid was added in HCl etching solution, corrosion of aluminum metal was inhibited by the chemical adsorption of sulfate ions. In the presence of $SO_4^{-2}$, cyclic voltammetry showed that the protective oxide film was formed on the inner surfaces of etch pits and, pit density was increased by nucleation on both the aluminum surface and the pits inside. Structure and distribution of etch pits found in AC etching of aluminum were strongly influenced by the concentration of $SO_4^{-2}$ and the amount of cathodic pulse charging. Below $0.8mC/cm^2$ of cathodic pulse charging, oxide films formed inside actively dissolving pits indicated the higher resistance to pit nucleation as the concentration of $SO_4^{-2}$ increases. However, the structural change of oxide films occurred above the $0.8mC/cm^2$ charging and the effect of $SO_4^{-2}$ was minimized, and it resulted in the rapid formation of etch pits.

  • PDF

Marine Algae and Their Potential Application as Antimicrobial Agents

  • Charway, Grace N.A.;Yenumula, Padmini;Kim, Young-Mog
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.3
    • /
    • pp.151-156
    • /
    • 2018
  • The world is becoming overwhelmed with widespread diseases as antibiotic resistance increases at an alarming rate. Hence, there is a demanding need for the discovery and development of new antimicrobial drugs. The ocean is gifted with many organisms like phytoplankton, algae, sponges, cnidarians, bryozoans, mollusk, tunicates and echinoderms, which are known to produce a wide variety of bioactive secondary metabolites with pharmacological properties. Many new therapeutic drugs have emerged from marine invertebrates, although the large algal community is yet to be explored. The bioactivity possessing secondary metabolites of marine algae include polyphenols, phlorotannins, alkaloids, halogenated compounds, sulfated polysaccharides, agar, carrageenan, proteoglycans, alginate, laminaran, rhamnan sulfate, galactosylglycerol, and fucoidan. These metabolites have been found to have great antimicrobial activities against many human aliments. Studies show that the algal community represents about 9% of biomedical compounds obtained from the sea. This review looks at the evolution of drugs from the ocean, with a special emphasis on the antimicrobial activities of marine algae.

Studies on the biochemical characteristics and plasmid profiles of Salmonella typhimurium isolated from pigeons and aquatic birds (비둘기 및 수생조류(水生鳥類) 유래(由來) Salmonella typhimurium의 생물화학적(生物化學的) 특성(特性)과 plasmid profile에 관(關)한 연구(硏究))

  • Park, No-chan;Choi, Won-pil
    • Korean Journal of Veterinary Research
    • /
    • v.30 no.2
    • /
    • pp.203-214
    • /
    • 1990
  • A total of 166 strains of Salmonella (S) typhimurium var copenhagen isolated from pigeons (164 strains) and aquatic birds (2 strains) were examined for the biochemical characteristics and plasmid profiles. All the strains were sensitive to ampicillin, chloramphenicol, gentamicin, kanamycin and sulfadimethoxine. But 13 strains(7.8%) were resistant to streptomycin (Sm), 2 (1.2%) to tetracycline, 2 (1.2%) to rifampicin, and 1 (0.6%) to nalidixic acid. Among drug resistant strains, only one strain resistant to Sm contained conjugative R plasmid which was fertility inhibition and incompatibility group $I_{\alpha}$. All the strains were sensitive to cobalt chloride, cupric sulfate, lead nitrate, mercuric chloride and silver nitrate. Of 166 isolates, 6 (3.6%) were resistant to sodium arsenate and 1 (0.6%) to potassium tellurite. Among 166 isolates, 1 (0.6%) was colicinogenic, 12 (7.2%) sucrose fermenters, and 166 (100%) maltose fermenters. Plasmid profiles were confirmed as being 4 or 5 plasmids, and their molecular weight ranged 3.2 to 60 megadalton (MD). All the strains harbored 60 Md plasmid. There are three patterns by the plasmid profile, 150 isolates (90.4%) were pattern I (3.2, 3.5, 33, 60Md), 14 (8.4%) pattern II (3.2, 3.5, 29, 60Md), and 2 (1.2%) pattern III (4.2, 7.8, 8.5, 15, 60Md). S typhimurium var copenhagen strains containing 60Md plasmid were resistant to killing by 90% normal guinea pig serum.

  • PDF

Isolation of Surfactant-Resistant Pseudomonads from the Estuarine Surface Microlayer

  • Louvado, Antonio;Coelho, Francisco J.R.C.;Domingues, Patricia;Santos, Ana L.;Gomes, Newton C.M.;Almeida, Adelaide;Cunha, Angela
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.283-291
    • /
    • 2012
  • Bioremediation efforts often rely on the application of surfactants to enhance hydrocarbon bioavailability. However, synthetic surfactants can sometimes be toxic to degrading microorganisms, thus reducing the clearance rate of the pollutant. Therefore, surfactant-resistant bacteria can be an important tool for bioremediation efforts of hydrophobic pollutants, circumventing the toxicity of synthetic surfactants that often delay microbial bioremediation of these contaminants. In this study, we screened a natural surfactant-rich compartment, the estuarine surface microlayer (SML), for cultivable surfactant-resistant bacteria using selective cultures of sodium dodecyl sulfate (SDS) and cetyl trimethylammonium bromide (CTAB). Resistance to surfactants was evaluated by colony counts in solid media amended with critical micelle concentrations (CMC) of either surfactants, in comparison with non-amended controls. Selective cultures for surfactant-resistant bacteria were prepared in mineral medium also containing CMC concentrations of either CTAB or SDS. The surfactantresistant isolates obtained were tested by PCR for the Pseudomonas genus marker gacA gene and for the naphthalene-dioxygenase-encoding gene ndo. Isolates were also screened for biosurfactant production by the atomized oil assay. A high proportion of culturable bacterioneuston was tolerant to CMC concentrations of SDS or CTAB. The gacA-targeted PCR revealed that 64% of the isolates were Pseudomonads. Biosurfactant production in solid medium was detected in 9.4% of tested isolates, all affiliated with genus Pseudomonas. This study shows that the SML is a potential source of surfactant-resistant and biosurfactant-producing bacteria in which Pseudomonads emerge as a relevant group.