DOI QR코드

DOI QR Code

Marine Algae and Their Potential Application as Antimicrobial Agents

  • Charway, Grace N.A. (Inland and Aquaculture Division, Fisheries Commission, Ministry of Fisheries and Aquaculture Development) ;
  • Yenumula, Padmini (Department of Food Science and Technology, Pukyong National University) ;
  • Kim, Young-Mog (Inland and Aquaculture Division, Fisheries Commission, Ministry of Fisheries and Aquaculture Development)
  • Received : 2018.04.17
  • Accepted : 2018.05.25
  • Published : 2018.06.30

Abstract

The world is becoming overwhelmed with widespread diseases as antibiotic resistance increases at an alarming rate. Hence, there is a demanding need for the discovery and development of new antimicrobial drugs. The ocean is gifted with many organisms like phytoplankton, algae, sponges, cnidarians, bryozoans, mollusk, tunicates and echinoderms, which are known to produce a wide variety of bioactive secondary metabolites with pharmacological properties. Many new therapeutic drugs have emerged from marine invertebrates, although the large algal community is yet to be explored. The bioactivity possessing secondary metabolites of marine algae include polyphenols, phlorotannins, alkaloids, halogenated compounds, sulfated polysaccharides, agar, carrageenan, proteoglycans, alginate, laminaran, rhamnan sulfate, galactosylglycerol, and fucoidan. These metabolites have been found to have great antimicrobial activities against many human aliments. Studies show that the algal community represents about 9% of biomedical compounds obtained from the sea. This review looks at the evolution of drugs from the ocean, with a special emphasis on the antimicrobial activities of marine algae.

해양생물에는 육상생물자원에서는 존재하지 않는 다양한 화합물이 많이 존재하는데 이들 화합물은 새로운 치료제 및 대체 치료법을 개발하는데 유용하게 이용될 수 있다. 현재 해조류의 다양한 생리활성에 대한 연구가 진행되고 있으며 최근에는 여러 병원성 및 인체 감염균에 대한 항균효과를 나타내어 신약개발의 보고로 다양한 연구가 진행이 되고있다. 즉, 해조류는 천연물신약 또는 새로운 치료제 개발에 중요한 생물자원이다.

Keywords

References

  1. Donia M., Hamann M.T.: Marine natural products and their potential applications as anti-infective agents. Lancet Infect. Dis., 6, 338-348 (2003).
  2. Lie J., Zhou J.: A marine natural product database. J. Chem. Inf. Comput. Sci., 42, 742-748 (2002). https://doi.org/10.1021/ci010111x
  3. Barbosa M., Valentao P., Andrade P.B.: Bioactive compounds from macroalgae in the new millennium: implications for neurodegenerative diseases. Mar. Drugs, 12, 4934-4972 (2014). https://doi.org/10.3390/md12094934
  4. Farias W.R., Valente A.P., Pereira M.S., Mourao P.A.: Structure and anticoagulant activity of sulfated galactans. Isolation of a unique sulfated galactan from the red algae Botryocladiaoccidentalis and comparison of its anticoagulant action with that of sulfated galactans from invertebrates. J. Biol. Chem., 275, 29299-2307 (2000). https://doi.org/10.1074/jbc.M002422200
  5. Nuijen B., Bouma M., Talsma H., Manada C., Jimeno J.M., Lopez-Lazaro L., Bult A., Beijnen J.H.: Development of a lyophilized parenteral pharmaceutical formulation of the investigational polypeptide marine anticancer agent kahalalide F. Drug Dev. Ind. Pharm., 27, 767-780 (2000).
  6. Palermo J.A., Flower B.P., Seldes A.M.: Chondriamides A and B new indolic metabolites from red algae Chondria sp. Tetrahedron Lett., 33, 3097-3100 (1992). https://doi.org/10.1016/S0040-4039(00)79823-6
  7. Davyt D., Entz W., Fernandez R., Mariezcurrena R., Mombru A.W., Saldana J., Dominguez L., Coll J., Manta E.: A new indole derivative from the red alga Chondriaatropurpurea. Isolation, structure determination, and anthelmintic activity. J. Nat. Prod., 61, 1560-1563 (1998). https://doi.org/10.1021/np980114c
  8. Hidari K.I., Takahashi N., Arihara M., Nagaoka M., Morita K., Suzuki T.: Structure and anti-dengue virus activity of sulfated polysaccharide from a marine alga. Biochem. Biophys. Res. Commun., 376, 91-95 (1981).
  9. Shibata T., Fujimoto K., Nagayama K., Yamaguchi K., Nakamura T.: Inhibitory activity of brown algal phlorotannins against hyaluronidase. Int. J. Food Sci. Tech., 37, 703-709 (2002). https://doi.org/10.1046/j.1365-2621.2002.00603.x
  10. Bernardi G. and Springer G.F.: Properties of highly purified fucan. J. Biol. Chem., 237, 75-80 (1962).
  11. Yuan H., Song J., Li X., Li N., Dai J.: Immunomodulation and antitumor activity of ${\kappa}$-carrageenan oligosaccharides. Cancer Lett., 243, 228-234 (2006). https://doi.org/10.1016/j.canlet.2005.11.032
  12. Carter G.T., Rinehart K.L. Jr., Li L.H. Kuentzel S.L., Connor J.L.: Brominated indoles from Laurenciabrongniartii. Tetrahedron Lett., 46, 4479-4482 (1978).
  13. Takamatsu S., Hodges T.W., Rajbhandari I., Gerwick W.H., Hamann M.T., Nagle D.G.: Marine natural products as novel antioxidant prototypes. J. Nat. Prod., 66, 605-608 (2003). https://doi.org/10.1021/np0204038
  14. Woolner V.H., Jones C.M., Field J.J., Fadzilah N.H., Munkacsi A.B., Miller J.H., Keyzers R.A., Northcote P.T.: Polyhalogenated indoles from the red alga Rhodophyllis-membranacea: The first isolation of bromo-chloro-iodo secondary metabolites. J. Nat. Prod., 79, 463-469 (2016). https://doi.org/10.1021/acs.jnatprod.5b00831
  15. de Sousa A.P.A., Torres M.R., Pessoa C., deMoraes M.O., Filho F.D.R., Alves A.P.N.N., Costa-Lotufo L.V.: In vivo growth-inhibition of sarcoma 180 tumor by alginates from brown seaweed Sargassum vulgare. Carbohydr. Polym., 69, 7-13 (2007). https://doi.org/10.1016/j.carbpol.2006.08.018
  16. Bourgougnon N., Lahaye M., Quemener B., Chermann J.C., Rimbert M., Cormaci M., Furnari G., Komprobst J.M.: Annual variation in composition and in vitro anti-HIV-1 activity of the sulfated glucuronogalactan from Schizymeniadubyi (Rhodophyta, Gigartinales). J. Appl. Phycol., 8, 155-161 (1996). https://doi.org/10.1007/BF02186319
  17. Gerwick W.H., Fenical W.: Ichthyotoxic and cytotoxic metabolites of the tropical brown alga, Stypopodiumzonale. J. Org. Chem., 46, 22-27 (1981). https://doi.org/10.1021/jo00314a005
  18. Rajasulochana P., Krishnamoorthy P., Dhamotharan R.: Isolation, identification of bromophenol compound and antibacterial activity of Kappaphycus sp. Int. J. Pharm. Bio. Sci., 3, 173-186 (2012).
  19. Torres F.A.E., Passalacqua T.G., Velasquez A.M.A., Souza R.A., Colepicolo P., Graminha M.A.S.: New drugs with antiprotozoal activity from marine algae: a review. Rev. Bras. Farmacog., 24, 265-276 (2014). https://doi.org/10.1016/j.bjp.2014.07.001
  20. Perez M.J., Falque E., Dominguez H.: Antimicrobial action of compounds from marine seaweed. Mar. Drugs, 14, E52 (2016). https://doi.org/10.3390/md14030052
  21. Guedes A.C., Barbosa C.R., Helena M.A., Claudia I.P., Francisco, X.M.: Microalgal and cyanobacterial cell extracts for use as natural antibacterial additives against food pathogens. Int. J. Food Sci. Technol., 46, 862-870 (2011). https://doi.org/10.1111/j.1365-2621.2011.02567.x
  22. Eom S.H., Kim Y.M., Kim S.K.: Antimicrobial effect of phlorotannins from marine brown algae. Food Chem. Toxicol., 50, 3251-3255 (2012). https://doi.org/10.1016/j.fct.2012.06.028
  23. Cavallo R.A., Acquaviva M.I., Stabili L., Cecere E., Petrocelli A., Narracci M.: Antibacterial activity of marine macroalgae against fish pathogenic Vibrio species. Cent. Eur. J. Biol., 8, 646 (2013).
  24. Demirel Z., Yilmaz-Koz F.F., Karabay-Yavasoglu U.N., Ozdemir G., Sukatar A.: Antimicrobial and antioxidant activity of brown algae from the Aegean Sea. J. Ser. Chem. Soc., 74, 619-628 (2009). https://doi.org/10.2298/JSC0906619D
  25. Bhagavathy S., Sumathi P., Jancy Sherene Bell I.: Green algae Chlorococcumhumicola a new source of bioactive compounds with antimicrobial activity. Asian Pac. J. Trop. Biomed., 1, S1-7 (2011). https://doi.org/10.1016/S2221-1691(11)60111-1
  26. Plaza M., Santoyo S., Jaime L, Garcia-Blairsy R.G., Herrero M., Senorans F.J., Ibanez E.: Screening for bioactive compounds from algae. J. Pharm. Biomed. Anal., 51, 450-455 (2010). https://doi.org/10.1016/j.jpba.2009.03.016
  27. Manilal A., Sujith S., Selvin J., Shakir C., Seghal G.: Antibacterial activity of Falkenbergiahillebrandii (Born) from the Indian coast against human pathogens. Int. J. Exp. Bot., 78, 161-166, (2009).
  28. Etahiri S., Bultel-Ponce V., Caux C., Guyot M.: New bromoditerpenes from the red alga Sphaerococcuscoronopifolius. J. Nat. Prod., 64, 1024-1027 (2001). https://doi.org/10.1021/np0002684
  29. Cueto M., Jensen P.R., Kauffman P., Fenical W., Lobkovsky E., Clardy J.: Pestalone a new antibiotic produced by a marine fungus in response to bacterial challenge. J. Nat. Prod., 64, 1444-1446 (2001). https://doi.org/10.1021/np0102713
  30. Perez R.M., Avila J.G., Perez S., Martinez A., Martinez G.: Antimicrobial activity of some American algae. J. Ethnopharmacol., 29, 111-116 (1990). https://doi.org/10.1016/0378-8741(90)90104-2
  31. Albuquerque M.R., Takaki C., Koening M.L.: Detection of antimicrobial activity in marine seaweeds. Rev.Inst. Antibiot. Univ. Fed. Pernambuco Recife., 21, 127-138 (1983).
  32. Choi J.G., Kang O.H., Brice O.O., Lee Y.S., Chae H.S., Oh Y.C., Sohn D.H., Park H., Choi H.G., Kim S.G., Shin D.W., Kwon D.Y.: Antibacterial activity of Ecklonia cava against methicillin-resistant Staphylococcus aureus and Salmonella spp. Foodborne Pathog. Dis., 7, 435-441 (2010). https://doi.org/10.1089/fpd.2009.0434
  33. Eom S.H., Lee D.S., Kang Y.M., Son K.T., Jeon Y.J., Kim Y.M.: Application of yeast Candida utilis to ferment Eiseniabicyclis for enhanced antibacterial effect. Appl. Biochem. Biotechnol., 171, 569-582 (2013). https://doi.org/10.1007/s12010-013-0288-x
  34. Alarif W.M., Al-Lihaibi S.S., Ayyad S.E., Abdel-Rhman M.H., Badria F.A.: Laurene-type sesquiterpenes from the Red Sea red alga Laurenciaobtusa as potential antitumoreantimicrobial agents. Eur. J. Med. Chem., 55, 462-466 (2012). https://doi.org/10.1016/j.ejmech.2012.06.060
  35. Lee M.H., Lee K.B., Oh S.M., Lee B.H., Chee H.Y.: Antifungal activities of dieckol isolated from the marine brown alga Ecklonia cava against Trichophyton rubrum. Food Sci. Biotechnol., 53, 504-507 (2010).
  36. da Silva Machado F.L., Pacienza-Lima W., Rossi-Bergmann B., de Souza Gestinari L.M., Fujii M.T. de Paula J.C., Costa S.S., Lopes N.P., Kaiser C.R., Soares, A.R.: Antileishmanialsesquiterpenes from the brazilian red alga Laurenciadendroidea. Planta Med., 77, 733-735 (2011). https://doi.org/10.1055/s-0030-1250526
  37. dos Santos A.O., Britta E.A., Bianco E.M., Ueda-Nakamura T., Filho B.P., Pereira R.C., Nakamura C.V.: 4-Acetoxydolastane diterpene from the Brazilian brown alga Canistrocarpuscervicornis as antileishmanial agent. Mar. Drugs, 9, 2369-2383 (2011). https://doi.org/10.3390/md9112369
  38. dos Santos A.O., Veiga-Santos P., Ueda-Nakamura T., Sudatti D.B., Bianco E.M., Pereira R.C., Nakamura C.V.: Effect of elatol, isolated from red seaweed Laurenciadendroidea, on Leishmaniaamazonensis. Mar. Drugs, 8, 2733-2743 (2010). https://doi.org/10.3390/md8112733
  39. Soares D.C., Calegari-Silva T.C., Lopes U.G., Teixeira V.L., de Palmer Paixao I.C.N., Cirne-Santos C., Bou-Habib D.C., Saraiva E.M.: Dolabelladienetriol, a compound from Dictyotapfaffii algae, inhibits the infection by Leishmaniaamazonensis. PLOS Neglect. Trop. D., 6, e1787 (2012) https://doi.org/10.1371/journal.pntd.0001787
  40. Veiga-Santos P., Pelizzaro-Rocha K.J., Santos A.O., Ueda-Nakamura T., Dias Filho B.P., Silva S.O., Sudatti D.B., Bianco E.M., Pereira R.C., Nakamura C.V.: In vitro anti-trypanosomal activity of elatol isolated from red seaweed Laurenciadendroidea. Parasitology, 137, 1661-1670 (2010). https://doi.org/10.1017/S003118201000034X
  41. Vonthron-Senecheau C., Kaiser M., Devambez I., Vastel A., Mussio I., Rusig A.M.: Antiprotozoal activities of organic extracts from French marine seaweeds. Mar. Drugs, 9, 922-933 (2011). https://doi.org/10.3390/md9060922
  42. Galle J.B., Attioua B., Kaiser M., Rusig A.M., Lobstein A., Vonthron-Senecheau C.: Eleganolone, a diterpene from the French marine alga Bifurcariabifurcata inhibits growth of the human pathogens Trypanosoma brucei and Plasmodium falciparum. Mar. Drugs, 11, 599-610 (2013). https://doi.org/10.3390/md11030599
  43. Suzgec-Selcuk S., Mericli A.H., Guven K.C., Kaiser M., Casey R., Hingley-Wilson S., Lalvani A., Tasdemir D.: Evaluation of Turkish seaweeds for antiprotozoal, antimycobacterial and cytotoxic activities. Phytother. Res., 25, 778-783 (2011). https://doi.org/10.1002/ptr.3330
  44. de Felicio R., de Albuquerque S., Young M.C., Yokoya N.S., Debonsi H.M.: Trypanocidal, leishmanicidal and antifungal potential from marine red alga Bostrychiatenella J. Agardh (Rhodomelaceae, Ceramiales). J. Pharm. Biomed. Anal., 52, 763-769 (2010). https://doi.org/10.1016/j.jpba.2010.02.018
  45. Richards J.T., Kern E.R., Glasgow L.A., Overall J.C. Jr., Deign E.F., Hatch M.T.: Antiviral activity of extracts from marine algae. Antimicrob. Agents Chemother., 14, 24-30 (1978). https://doi.org/10.1128/AAC.14.1.24
  46. Meiyu G., Fuchuan L., Xianliang X., Jing L., Zuowei Y., Huashi G.: The potential molecular targets of marine sulfated polymannuroguluronate interfering with HIV-1 entry. Interaction between SPMG and HIV-1 rgp120 and CD4 molecule. Antiviral Res., 59, 127-135 (2003). https://doi.org/10.1016/S0166-3542(03)00068-8
  47. Witvrouw M., De Clercq E.: Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen. Pharmacol., 29, 497-511 (1997). https://doi.org/10.1016/S0306-3623(96)00563-0
  48. Ponce N.M., Pujol C.A., Damonte E.B., Flores M.L., Stortz C.A.: Fucoidans from the brown seaweed Adenocystisutricularis: extraction methods, antiviral activity and structural studies. Carbohydr. Res., 338, 153-165 (2003). https://doi.org/10.1016/S0008-6215(02)00403-2
  49. Pujol C.A., Estevez J.M., Carlucci M.J., Ciancia M., Cerezo A.S., Damonte E.B.: Novel DL-galactan hybrids from the red seaweed Gymnogongrustorulosus are potent inhibitors of herpes simplex virus and dengue virus. Antivir. Chem. Chemother., 13, 83-89 (2002). https://doi.org/10.1177/095632020201300202
  50. Schaeffer D.J., Krylov V.S.: Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicol. Environ. Saf., 45, 208-227 (2000). https://doi.org/10.1006/eesa.1999.1862
  51. Thompson K.D.Dragar C.: Antiviral activity of Undariapinnatifida against herpes simplex virus. Phytother. Res., 18, 551-555 (2004). https://doi.org/10.1002/ptr.1487
  52. Ono L., Wollinger W., Rocco I.M., Coimbra T.L., Gorin P.A., Sierakowski M.R.: In vitro and in vivo antiviral properties of sulfated galactomannans against yellow fever virus (BeH111 strain) and dengue 1 virus (Hawaii strain). Antiviral Res., 60, 201-208 (2003). https://doi.org/10.1016/S0166-3542(03)00175-X
  53. Talarico L.B., Pujol C.A., Zibetti R.G., Faria P.C., Noseda M.D., Duarte M.E., Damonte E.B.: The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell. Antiviral Res., 66, 103-110 (2005). https://doi.org/10.1016/j.antiviral.2005.02.001
  54. Beress A., Wassermann O., Tahhan S., BruhnT., Beress L., Kraiselburd E.N., Gonzalez L.V., de Motta G.E., Chavez P.I.: A new procedure for the isolation of anti-HIV compounds (polysaccharides and polyphenols) from the marine alga Fucusvesiculosus. J. Nat. Prod., 56, 478-488 (1993). https://doi.org/10.1021/np50094a005