• Title/Summary/Keyword: Sugar-related genes

Search Result 36, Processing Time 0.024 seconds

Sugar content analysis and expression profiling of sugar related genes in contrasting Strawberry (Fragaria × ananassa) cultivars

  • Shanmugam, Ashokraj;Hossain, Mohammad Rashed;Natarajan, Sathishkumar;Jung, Hee-Jeong;Song, Jae-Young;Kim, Hoy-Taek;Nou, Ill-Sup
    • Journal of Plant Biotechnology
    • /
    • v.44 no.2
    • /
    • pp.178-190
    • /
    • 2017
  • $Fragaria{\times}ananassa$, a strawberry evolved from hybridization between F. virginiana and F. chiloensis, is a globally cultivated and consumed fruit crop valued for its flavor and nutritional value. Flavor and quality of fruits are determined by factors such as sugars and organic acids present during fruit development. These characteristics are highly subjective in different genotypes and affected by various environmental factors. In this study, we analyzed contents of major sugar compounds including fructose, glucose and sucrose by HPLC analysis in four cultivars namely, Maehyang, Seolhyang, Festival and Sweet Charlie. We identified 55 genes related to fructose, glucose, sucrose and soluble sugar regulation whose expression were analyzed in four cultivars at three developmental stages of the fruit namely, green, white and ripened stages. Expression of these genes across these progressive fruit developmental stages varied among cultivars. Among the 55 genes, genes FaFru3, FaSuc11 and FaGlu8 revealed differential patterns of expression along developmental stages of the fruit in high and low sugar-containing genotypes, respectively and may be putative candidates for sugar content in strawberries. Expression of genes are discussed with regard to corresponding sugar content in these genotypes. Further analysis and application of these genes may be valuable in developing high sugar containing cultivars via marker-assisted breeding.

Candidate Genes Related to Sugar Content in Sweetpotato using GWAS

  • Tae Hwa Kim;Mi Nam Chung;Hyeong Un Lee;Won Park;Sang Sik Nam
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.192-192
    • /
    • 2022
  • Sweetpotato is rich in starch, which is converted to sugar during storage due to enzymatic hydrolysis. The sugar content of sweetpotato is a component related to taste and storability. In this study, the sugar content (fructose, glucose, maltose, sucrose and total sugar content) of 94 genotypes was evaluated and the GWAS (Genome-Wide Association Study) was conducted to search for candidate genes for sugar content. The fructose and glucose content were 0.2 ~ 8.8 and 0.2 ~ 9.4 g/100g, respectively. The maltose, sucrose and total sugar content were 0.2 ~ 9.1,3.2 - 30.0 and 7.9 ~ 40.2 g/100g, respectively. The fructose and glucose showed a positive correlation (0.98). The 94 genotypes were genotyped with genotyping-by-sequencing (GBS) and aligned against the reference genome sequences of sweetpotato. The GBS libraries from 94 genotypes were sequenced on an Illumina HiSeqXten system, and 1,339,892 SNPs (Single Nucleotide Polymorphism) were generated. Filtering for < 60% missing rate and > 0.05 minor allele frequency resulted in a total of 44,255 SNPs used in GWAS. The GAPIT (Genome Association and Prediction Integrated Tool) was used to conduct based on the mean of sugar content with a Bonferroni-corrected chromosome-wide significance threshold with a -logio(P) of 5.95. The significant SNPs were obtained with fructose (seven), glucose (six), maltose (four) and sucrose (nine). There were several genes related to sugar content around the significant SNPs such as sugar transport protein 8-like, probable galactose-1 -phosphate uridyltransferase-like and beta-amylase. These results will contribute to understanding of sugar content and conversion in sweetpotato.

  • PDF

Fumigaclavine C attenuates adipogenesis in 3T3-L1 adipocytes and ameliorates lipid accumulation in high-fat diet-induced obese mice

  • Yu, Wan-Guo;He, Yun;Chen, Yun-Fang;Gao, Xiao-Yao;Ning, Wan-E;Liu, Chun-You;Tang, Ting-Fan;Liu, Quan;Huang, Xiao-Cheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.3
    • /
    • pp.161-169
    • /
    • 2019
  • Fumigaclavine C (FC), an active indole alkaloid, is obtained from endophytic Aspergillus terreus (strain No. FC118) by the root of Rhizophora stylosa (Rhizophoraceae). This study is designed to evaluate whether FC has anti-adipogenic effects in 3T3-L1 adipocytes and whether it ameliorates lipid accumulation in high-fat diet (HFD)-induced obese mice. FC notably increased the levels of glycerol in the culture supernatants and markedly reduced lipid accumulation in 3T3-L1 adipocytes. FC differentially inhibited the expressions of adipogenesis-related genes, including the peroxisome proliferator-activated receptor proteins, CCAAT/enhancer-binding proteins, and sterol regulatory element-binding proteins. FC markedly reduced the expressions of lipid synthesis-related genes, such as the fatty acid binding protein, lipoprotein lipase, and fatty acid synthase. Furthermore, FC significantly increased the expressions of lipolysis-related genes, such as the hormone-sensitive lipase, Aquaporin-7, and adipose triglyceride lipase. In HFD-induced obese mice, intraperitoneal injections of FC decreased both the body weight and visceral adipose tissue weight. FC administration significantly reduced lipid accumulation. Moreover, FC could dose-dependently and differentially regulate the expressions of lipid metabolism-related transcription factors. All these data indicated that FC exhibited anti-obesity effects through modulating adipogenesis and lipolysis.

Comparative Transcriptome Analysis of Sucrose Biosynthesis-Associated Gene Expression Using RNA-Seq at Various Growth Periods in Sugar Beet (Beta vulgaris L.)

  • Baul Yang;Ye-Jin Lee;Dong-Gun Kim;Sang Hoon Kim;Woon Ji Kim;Jae Hoon Kim;So Hyeon Baek;Joon-Woo Ahn;Chang-Hyu Bae;Jaihyunk Ryu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.63-63
    • /
    • 2023
  • Sugar beet (Beta vulgaris L.) is one of the most important sugar crops and provides up to 30% of the world's sugar production. In this study, we mainly performed RNA-sequencing to obtain identify putative genes involved in biosynthesis pathway of sucrose in sugar beet and comparative transcriptomic analyses in the four developmental stages (50, 90, 160 and 330 days after seedling). As a result of the sugar content analysis, it was increased significantly from 50 to 160 days after seedling (DAS), and then decreased at 330 DAS. On the other hand, the taproot weight, length, and width were increased during all the growth periods. Out of 21,451 genes with expressed value, 21,402 (99.77%) genes had functional descriptions. Among the three comparisons, S1 (50 DAS) vs. S2 (90 DAS), S1 vs. S3 (160 DAS), and S1 vs. S4 (330 DAS), expression profiling of the transcripts was identified 4,991 with differentially expressed genes (DEGs). By comparing the top 20 enriched gene ontology (GO) terms as three comparisons, the top GO terms were commonly confirmed with external encapsulating structure, cell wall, and extracellular regions. In addition, the 38 enriched candidate genes related to sucrose biosynthetic pathway were screened from the entire DEG pool, and the candidate genes might be providing a basic data for further sugar metabolism studies in development of sugar beet taproot.

  • PDF

Sugar content and expression of sugar metabolism-related gene in strawberry fruits from various cultivars

  • Lee, Jeongyeo;Kim, Hyun-Bi;Noh, Young-Hee;Min, Sung Ran;Lee, Haeng-Soon;Jung, Jaeeun;Park, Kun-Hyang;Kim, Dae-Soo;Nam, Myeong Hyeon;Kim, Tae Il;Kim, Sun-Ju;Kim, HyeRan
    • Journal of Plant Biotechnology
    • /
    • v.45 no.2
    • /
    • pp.90-101
    • /
    • 2018
  • Strawberry (Fragaria ${\times}$ ananassa) is a globally-cultivated and popular fruit crop, prized for its flavor and nutritional value. Sweetness, a key determinant of fruit quality, depends on the sugar composition and concentration. We selected eight strawberry cultivars based on the fruit soluble solids content to represent high and low sugar content groups. The average soluble solid content was $13.6^{\circ}Brix$ (Okmae, Geumsil, Aram, and Maehyang) and $2.9^{\circ}Brix$ (Missionary, Camino Real, Portola, and Gilgyung53), for the high and low sugar content groups, respectively. Sucrose was the main sugar in the cultivars with high sugar content, whereas fructose was the main component in the low sugar content cultivars. Fruit starch concentration ranged from $3.247{\pm}0.056$ to $3.850{\pm}0.055g/100g$, with a 12% higher concentration in the high sugar content cultivars. Additionally, we identified 41 sugar metabolism-related genes in Fragaria ${\times}$ ananassa and analyzed the relationship between their transcripts and the sugar accumulation in fruit. FaGPT1, FaTMT1, FaHXK1, FaPHS1, FaINVA-3, and FacxINV2-1 were highly expressed in the high sugar content cultivars, while FapGlcT, FaTMT2-1, FaPHS2-1, FaSUSY1-1, and FaSUSY1-2 were highly expressed in the low sugar content cultivars. In general, a greater number of genes encoding sugar transporters or involved in sugar synthesis were highly expressed in the high sugar content cultivars. Contrarily, genes involved in sugar degradation were preferentially transcribed in the low sugar content cultivars. Although gene expression was not perfectly proportional to sugar content or concentration, our analysis of the genes involved in sugar metabolism and accumulation in strawberries provides a framework for further studies and for the subsequent engineering of sugar metabolism to enhance fruit quality.

Virulence genes of Streptococcus mutans and dental caries

  • You, Yong-Ouk
    • International Journal of Oral Biology
    • /
    • v.44 no.2
    • /
    • pp.31-36
    • /
    • 2019
  • Streptococcus mutans is one of the important bacteria that forms dental biofilm and cause dental caries. Virulence genes in S. mutans can be classified into the genes involved in bacterial adhesion, extracellular polysaccharide formation, biofilm formation, sugar uptake and metabolism, acid tolerance, and regulation. The genes involved in bacterial adhesion are gbps (gbpA, gbpB, and gbpC) and spaP. The gbp genes encode glucan-binding protein (GBP) A, GBP B, and GBP C. The spaP gene encodes cell surface antigen, SpaP. The genes involved in extracellular polysaccharide formation are gtfs (gtfB, gtfC, and gtfD) and ftf, which encode glycosyltransferase (GTF) B, GTF C, and GTF D and fructosyltransferase, respectively. The genes involved in biofilm formation are smu630, relA, and comDE. The smu630 gene is important for biofilm formation. The relA and comDE genes contribute to quorumsensing and biofilm formation. The genes involved in sugar uptake and metabolism are eno, ldh, and relA. The eno gene encodes bacterial enolase, which catalyzes the formation of phosphoenolpyruvate. The ldh gene encodes lactic acid dehydrogenase. The relA gene contributes to the regulation of the glucose phosphotransferase system. The genes related to acid tolerance are atpD, aguD, brpA, and relA. The atpD gene encodes $F_1F_0$-ATPase, a proton pump that discharges $H^+$ from within the bacterium to the outside. The aguD gene encodes agmatine deiminase system and produces alkali to overcome acid stress. The genes involved in regulation are vicR, brpA, and relA.

Expression of Genes Affecting Skin Coloration and Sugar Accumulation in 'Hongro' Apple Fruits at Ripening Stages in High Temperatures (고온에 의한 변색단계별 '홍로' 사과의 착색 및 당 축적 관련 유전자 발현 분석)

  • Kim, Seon Ae;Ahn, Soon Young;Yun, Hae Keun
    • Journal of Bio-Environment Control
    • /
    • v.25 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • High temperature is one of the important environmental factors limiting cultivation of apple (Malus domestica Borkh). The expression of genes related with anthocyanin synthesis and sugar accumulation in response to high temperature was studied in the 'Hongro' apple fruits at different developmental stages in different temperature conditions through real-time PCR. Expression of ${\hat{a}}$-amylase (BMY) and polygalacturonase (PG) genes related with sugar synthesis was higher in late ripening stages than in initial ripening stages. Expression of four genes such as phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), and malate dehydrogenase (MDH), which were related with fruit skin coloration, increased gradually in apple fruits of the middle and late ripening stages. Interestingly, the expressions of all genes were highly inhibited expressed at $30-35^{\circ}C$ compared to $25^{\circ}C$ in all ripening stages. In the further work, investigation of expression levels of various genes could be conducted in the level of transcriptomics in fruits at the middle ripening stages to get meaningful information of ripening metabolism in apple in high temperatures.

The Mechanisms for Xylose Transport into Yeasts (효모내로의 Xylose 운반 기작)

  • Han, Ji-Hye;Choi, Gi-Wook;Chung, Bong-Woo;Min, Ji-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.1
    • /
    • pp.7-12
    • /
    • 2010
  • The biochemical study of sugar uptake in yeasts started five decades ago and led to the early production of abundant kinetic and mechanistic data. However, the first accurate overview of the underlying sugar transporter genes was obtained relatively late, due mainly to the genetic complexity of hexose uptake in the model yeast, Saccharomyces cerevisiae. The genomic era generated in turn a massive amount of information, allowing the identification of a multitude of putative sugar transporter and sensor-encoding genes in yeast genomes, many of which are phylogenetically related. This review aims to briefly summarize our current knowledges on the biochemical and molecular features of the transporters of pentoses in yeasts, when possible establishing links between previous kinetic studies and genomic data currently available. Emphasis is given to recent developments concerning the identification of D-xylose transporter genes, which are thought to be key players in the optimization of S. cerevisiae for bioethanol production from lignocellulose hydrolysates.

Unraveling Biohydrogen Production and Sugar Utilization Systems in the Electricigen Shewanella marisflavi BBL25

  • Sang Hyun Kim;Hyun Joong Kim;Su Hyun Kim;Hee Ju Jung;Byungchan Kim;Do-Hyun Cho;Jong-Min Jeon;Jeong-Jun Yoon;Sang-Hyoun Kim;Jeong-Hoon Park;Shashi Kant Bhatia;Yung-Hun Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.5
    • /
    • pp.687-697
    • /
    • 2023
  • Identification of novel, electricity-producing bacteria has garnered remarkable interest because of the various applications of electricigens in microbial fuel cell and bioelectrochemical systems. Shewanella marisflavi BBL25, an electricity-generating microorganism, uses various carbon sources and shows broader sugar utilization than the better-known S. oneidensis MR-1. To determine the sugar-utilizing genes and electricity production and transfer system in S. marisflavi BBL25, we performed an in-depth analysis using whole-genome sequencing. We identified various genes associated with carbon source utilization and the electron transfer system, similar to those of S. oneidensis MR-1. In addition, we identified genes related to hydrogen production systems in S. marisflavi BBL25, which were different from those in S. oneidensis MR-1. When we cultured S. marisflavi BBL25 under anaerobic conditions, the strain produced 427.58 ± 5.85 µl of biohydrogen from pyruvate and 877.43 ± 28.53 µl from xylose. As S. oneidensis MR-1 could not utilize glucose well, we introduced the glk gene from S. marisflavi BBL25 into S. oneidensis MR-1, resulting in a 117.35% increase in growth and a 17.64% increase in glucose consumption. The results of S. marisflavi BBL25 genome sequencing aided in the understanding of sugar utilization, electron transfer systems, and hydrogen production systems in other Shewanella species.

Method for Cloning Biosynthetic Genes of Secondary Metabolites Including Deoxysugar from Actinomycetes

  • Sohng, Jae-Kyung;Oh, Tae-Jin;Kim, Chun-Gyu
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.475-483
    • /
    • 1998
  • Many antibiotics contain partially deoxygenated sugar components that are usually essential for biological activity, affinity, structural stability, and solubility of antibiotics. Gene probes of the biosynthetic genes related with the deoxysugar were obtained from PCR. Primers were designed from the conserved peptide sequences of the known dTDP-D-glucose 4,6-dehydratases, which are the key step enzymes in the biosynthesis of deoxysugar. The primers were applied to amplify parts of dehydratase genes to 27 actinomycetes that produce the metabolites containing deoxysugar as structural constituents. About 180 and 340 bp DNA fragments from all of the actinomycetes were produced by PCR and analyzed by Southern blot and DNA sequencing. The PCR products were used as gene probes to clone the biosynthetic gene clusters for the antibiotic mithramycin, rubradirin, spectinomycin, and elaiophyrin. This method should allow for detecting of the biosynthetic gene clusters of a vast array of secondary metabolites isolated from actinomycetes because of the widespread existence of deoxysugar constituents in secondary metabolites.

  • PDF