• Title/Summary/Keyword: Suction-induced effective stress

Search Result 9, Processing Time 0.025 seconds

Numerical Study of Unsaturated Infinite Slope Stability regarding Suction Stress under Rainfall-induced Infiltration Conditions

  • Song, Young-Suk;Hwang, Woong-Ki
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Numerical stability analysis of an unsaturated infinite slope under rainfall-induced infiltration conditions was performed using generalized effective stress to unify both saturated and unsaturated conditions The soil-water characteristic curve (SWCC) of sand with a relative density of 75% was initially measured for both drying and wetting processes. The hydraulic conductivity function (HCF) and suction stress characteristic curve (SSCC) were subsequently estimated. Under the rainfall-induced infiltration conditions, transient seepage analysis of an unsaturated infinite slope was performed using the finite element analysis program, SEEP/W. Based on these results, the stability of an unsaturated infinite slope under rainfall-induced infiltration conditions was examined in relation to suction stress. According to the results, the negative pore-water pressure and water content within the slope soil changed over time due to the infiltration. In addition, the variation of the negative pore-water pressure and water content led to a variation in suction stress and a subsequent change in the slope's factor of safety during the rainfall period.

Stability of unsaturated infinite slope under rainfall-induced infiltration (강우침투시 불포화 무한사면의 안정성 평가)

  • Song, Young-Suk;Hwang, Woong-Ki;Lee, Nam-Woo;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.71-78
    • /
    • 2010
  • The stability analysis of unsaturated infinite slope under rainfall-induced infiltration condition was performed using the generalized effective stress that unifies both saturated and unsaturated condition recently proposed by Lu and Likos(2004, 2006). The Soil-Water Characteristic Curve (SWCC) of the sand with the relative density of 75% was first measured for both drying and wetting processes. The Hydraulic Conductivity Function (HCF) and Suction Stress Characteristic Curve (SSCC) were subsequently estimated. Also, under the rainfall-induced infiltration condition transient seepage analysis of unsaturated infinite slope was performed using the finite element program, SEEP/W. Based on these results, the stability of unsaturated infinite slope under rainfall-induced infiltration condition was examined considering the suction stress. According to the results, the negative pore water pressure and water content within the soil changed with time due to the infiltration. Also, the variation of those caused the variation of suction stress and then the factor of safety of slope changed consequently during the rainfall period.

  • PDF

Bearing capacity of strip footings on unsaturated soils under combined loading using LEM

  • Afsharpour, Siavash;Payan, Meghdad;Chenari, Reza Jamshidi;Ahmadi, Hadi;Fathipour, Hessam
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.223-235
    • /
    • 2022
  • Bearing capacity of shallow foundations is often determined for either dry or saturated soils. In some occasions, foundations may be subjected to external loading which is inclined and/or eccentric. In this study, the ultimate bearing capacity of shallow foundations resting on partially saturated coarse-grained cohesionless and fine-grained cohesive soils subjected to a wide range of combined vertical (V) - horizontal (H) - moment (M) loadings is rigorously evaluated using the well-established limit equilibrium method. The unified effective stress approach as well as the suction stress concept is effectively adopted so as to simulate the behaviour of the underlying unsaturated soil medium. In order to obtain the bearing capacity, four equilibrium equations are solved by adopting Coulomb failure mechanism and Bishop effective stress concept and also considering a linear variation of the induced matric suction beneath the foundation. The general failure loci of the shallow foundations resting on unsaturated soils at different hydraulic conditions are presented in V - H - M spaces. The results indicate that the matric suction has a marked influence on the bearing capacity of shallow foundations. In addition, the effect of induced suction on the ultimate bearing capacity of obliquely-loaded foundations is more pronounced than that of the eccentrically-loaded footings.

Experimental Study on the Hysteresis of Suction Stress in Unsaturated Sand (불포화 모래의 흡입응력 이력현상에 대한 실험적 연구)

  • Song, Young-Suk;Choi, Jin-Su;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.145-155
    • /
    • 2012
  • The matric suction and volumetric water content of Jumunin standard sand with a relative density of 60% were measured using an Automated Soil-Water Characteristic Curve (SWCC) apparatus during both drying and wetting processes. The test time for the drying process was longer than that for the wetting process, because the flow of water is likely to be protected by air trapped in voids within the soils during the drying process. Based on the matric suction and volumetric water content, the SWCC was estimated using the model proposed by van Genuchten (1980). For the drying process, the unsaturated fitting parameters ${\alpha}$, n, and m were 0.399, 8.586, and 0.884, respectively; for the wetting process, the values were 0.548, 5.625, and 8.220, respectively. The hysteresis phenomenon occurred in the SWCCs, which means the SWCC of the drying process is not matched with the SWCC of the wetting process. Using these unsaturated parameters, we estimated the Suction Stress Characteristic Curve (SSCC), based on the relationship between suction stress and the effective degree of saturation. The suction stress showed a rapid decrease when the matric suction exceeds the Air Entry Value (AEV). Therefore, the effective stress of unsaturated soils is different from that of saturated soils when the matric suction exceeds the AEV. The suction stress of the drying process exceeds that of the wetting process for a given effective degree of saturation. The hysteresis phenomenon was also recognized in SSCCs. The hysteresis phenomenon of SSCCs arises from that of SWCCs, which is induced by the ink bottle effect and the contact angle effect. In the case of a sandy slope, the suction stress is positive and acts to enhance the slope stability as the water infiltrates the ground, but is negative when the suction stress exceeds the AEV. The results obtained for the wetting process should be applied in analyses of slope stability, because the process of water infiltration into ground is similar to the wetting process.

Anisotropic Modelling of Partially Saturated Soil Behaviour by Means of ALTERNAT (ALTERNAT 구성모델을 이용한 불포화토 거동의 비등방 모형화)

  • Kwon, Hee-Cheol;Lee, Cheo-Keun;Heo, Yol
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.71-82
    • /
    • 2001
  • 불포화토에 있어서 함수상태는 지반이 건조할수록 수축하고 습윤상태로 진행할수록 파괴에 이르게 하는 추가적인 입자간 응력을 발생시키며, 이러한 간극수와 흙입자 사이에 발생하는 현상을 규명하기 위해서는 정확한 모형화가 필요하다. 흙입자와 간극수 사이의 상호작용에서 흡입유발 유효응력(suction-induced effective stress)을 규명하기 위해 정규모형(regular packing)과 임의모형(random packing)이 적용될 수 있다. 최근의 연구결과에 따르면 흙은 흡입유발 유효응력과 밀접한 관계가 있으며, 흙의 비등방텐서(anisotropic tensor)를 구하기 위해 적용된 ALTERNAT 모델을 이용하여 구조텐서(fabric tensor)를 개략적으로 정의할 수 있다. Thornton의 임의모형 시뮬레이션은 구조텐서에 상응하는 파괴응력 상태를 포함하고 있으며, 미소역학 시뮬레이션을 통하여 구조텐서를 구하였다. 본 연구에서는 상기에 언급된 구형의 흙입자 모형에 대한 이론적 고찰이 수행되었고, ALTERNAT 모델을 적용한 간단한 비등방텐서의 결과를 구조텐서와 비교하였다. 본 연구결과 비등방텐서는 미소역학 시뮬레이션에 의한 구조텐서에 비해 약 20~40%정도 큰 값을 나타내었다.

  • PDF

Coupling Effects in Rainfall-induced Slope Stability Considering Hydro-mechanical Model (강우침투에 의한 비탈면 안정해의 수리-역학적 모델을 이용한 커플링 효과)

  • Kim, Yong-Min;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.5-15
    • /
    • 2015
  • In this study, rainfall-induced slope stability and coupling effect are investigated using hydro-mechanical finite element model. This model is developed by formulating constitutive and coupled balance equations and is verified by comparing the numerical results with field matric suction. The homogeneous soil layer (soil column) and soil slope are modeled by this model, and the results of variation in matric suction, mean effective stress, porosity, displacement, factor of safety are compared with those of staggered analysis. It is found that the vertical and horizontal displacement from coupling analysis considering change in porosity is larger than that of staggered analysis. The displacement and matric suction from coupling analysis by rainfall infiltration can affect slope instability, which shows a progressive failure behavior. The lowest factor of safety is observed under short-term rainfall. This results confirm the fact that coupling analysis is needed to design soil slope under severe rain condition.

Introduction of Barcelona Basic Model for Analysis of the Thermo-Elasto-Plastic Behavior of Unsaturated Soils (불포화토의 열·탄소성 거동 분석을 위한 Barcelona Basic Model 소개)

  • Lee, Changsoo;Yoon, Seok;Lee, Jaewon;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.29 no.1
    • /
    • pp.38-51
    • /
    • 2019
  • Barcelona Basic Model (BBM) can describe not only swelling owing to decrease in effective stress, but also wetting-induced swelling due to decrease in suction. And the BBM can also consider increase in cohesion and apparent preconsolidation stress with suction, and decrease in the apparent preconsolidation stress with temperature. Therefore, the BBM is widely used all over the world to predict and to analyze coupled thermo-hydro-mechanical behavior of bentonite which is considered as buffer materials at the engineered barrier system in the high-level radioactive waste disposal system. However, the BBM is not well known in Korea, so this paper introduce the BBM to Korean rock engineers and geotechnical engineers. In this study, Modified Cam Clay (MCC) model is introduced before all, because the BBM was first developed as an extension of the MCC model to unsaturated soil conditions. Then, the thermo-elasto-plastic version of the BBM is described in detail.

Two-dimensional Numerical Simulation of Rainfall-induced Slope Failure (강우에 의한 사면붕괴에 관한 2차원 수치모의)

  • Regmi, Ram Krishna;Jung, Kwan-Sue;Lee, Gi-Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.34-34
    • /
    • 2012
  • Heavy storms rainfall has caused many landslides and slope failures especially in the mountainous area of the world. Landslides and slope failures are common geologic hazards and posed serious threats and globally cause billions in monetary losses and thousands of casualies each year so that studies on slope stability and its failure mechanism under rainfall are being increasing attention of these days. Rainfall-induced slope failures are generally caused by the rise in ground water level, and increase in pore water pressures and seepage forces during periods of intense rainfall. The effective stress in the soil will be decreased due to the increased pore pressure, which thus reduces the soil shear strength, eventually resulting in slope failure. During the rainfall, a wetting front goes downward into the slope, resulting in a gradual increase of the water content and a decrease of the negative pore-water pressure. This negative pore-water pressure is referred to as matric suction when referenced to the pore air pressure that contributes to the stability of unsaturated soil slopes. Therefore, the importance is the study of saturated unsaturated soil behaviors in evaluation of slope stability under heavy rainfall condition. In an actual field, a series of failures may occur in a slope due to a rainfall event. So, this study attempts to develop a numerical model to investigate this failure mechanism. A two-dimensional seepage flow model coupled with a one-dimensional surface flow and erosion/deposition model is used for seepage analysis. It is necessary to identify either there is surface runoff produced or not in a soil slope during a rainfall event, while analyzing the seepage and stability of such slopes. Runoff produced by rainfall may result erosion/deposition process on the surface of the slope. The depth of runoff has vital role in the seepage process within the soil domain so that surface flow and erosion/deposition model computes the surface water head of the runoff produced by the rainfall, and erosion/deposition on the surface of the model slope. Pore water pressure and moisture content data obtained by the seepage flow model are then used to analyze the stability of the slope. Spencer method of slope stability analysis is incorporated into dynamic programming to locate the critical slip surface of a general slope.

  • PDF

Assessment of Landslide Susceptibility of Physically Based Model Considering Characteristics of the Unsaturated Soil (불포화지반 특성을 고려한 물리적 사면 모델 기반의 산사태 취약성 분석)

  • Kim, Jin Seok;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.49-59
    • /
    • 2014
  • Rainfall-induced landslides are caused by reduction of effective stress and shear strength due to rainfall infiltration. In order to analyze the susceptibility of landslides, the statistical analysis approach has been used widely but this approach has the limitation which cannot take into account of landslide triggering mechanism. Therefore, the physically based model which can consider the process of landslide occurrence was proposed and commonly used. However, the most previous physically based model analyses evaluate and consider the strength characteristics for saturated soil only in the susceptibility analysis. But the strength parameters for unsaturated soil such as matric suction should be considered with the strength parameters for saturated soil since the shear strength in unsaturated soil also plays important role in the stability of slope. Consequently this study suggested the modified physically based slope model which can evaluate strength characteristics for both of saturated and unsaturated soils. In addition, this study evaluated the thickness of saturated part in slope with rainfall intensity and hydraulic characteristics of slope on the basis of physically based model. In order to evaluate the feasibility, the proposed model was applied to practical example in Jinbu area, Gangwon-do, which was experienced large amount of landslides in July 2006. The ROC graph analysis was used to evaluate the validation of the model, and the analysis results were compared with the results of the previous analysis approach.