DOI QR코드

DOI QR Code

Experimental Study on the Hysteresis of Suction Stress in Unsaturated Sand

불포화 모래의 흡입응력 이력현상에 대한 실험적 연구

  • Song, Young-Suk (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Choi, Jin-Su (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Gyo-Won (Dept. of Geology, Kyoungpook National University)
  • 송영석 (한국지질자원연구원 지구환경연구본부) ;
  • 최진수 (한국지질자원연구원 지구환경연구본부) ;
  • 김교원 (경북대학교 자연과학대학 지질학과)
  • Received : 2012.03.02
  • Accepted : 2012.05.09
  • Published : 2012.06.30

Abstract

The matric suction and volumetric water content of Jumunin standard sand with a relative density of 60% were measured using an Automated Soil-Water Characteristic Curve (SWCC) apparatus during both drying and wetting processes. The test time for the drying process was longer than that for the wetting process, because the flow of water is likely to be protected by air trapped in voids within the soils during the drying process. Based on the matric suction and volumetric water content, the SWCC was estimated using the model proposed by van Genuchten (1980). For the drying process, the unsaturated fitting parameters ${\alpha}$, n, and m were 0.399, 8.586, and 0.884, respectively; for the wetting process, the values were 0.548, 5.625, and 8.220, respectively. The hysteresis phenomenon occurred in the SWCCs, which means the SWCC of the drying process is not matched with the SWCC of the wetting process. Using these unsaturated parameters, we estimated the Suction Stress Characteristic Curve (SSCC), based on the relationship between suction stress and the effective degree of saturation. The suction stress showed a rapid decrease when the matric suction exceeds the Air Entry Value (AEV). Therefore, the effective stress of unsaturated soils is different from that of saturated soils when the matric suction exceeds the AEV. The suction stress of the drying process exceeds that of the wetting process for a given effective degree of saturation. The hysteresis phenomenon was also recognized in SSCCs. The hysteresis phenomenon of SSCCs arises from that of SWCCs, which is induced by the ink bottle effect and the contact angle effect. In the case of a sandy slope, the suction stress is positive and acts to enhance the slope stability as the water infiltrates the ground, but is negative when the suction stress exceeds the AEV. The results obtained for the wetting process should be applied in analyses of slope stability, because the process of water infiltration into ground is similar to the wetting process.

자동 흙-함수특성곡선 시험장치를 이용하여 상대밀도 60%인 주문진표준사에 대한 건조 및 습윤과정에서의 모관흡수력과 체적함수비를 측정하였다. 습윤과정이 건조과정에 비해 상대적으로 많은 시간이 소요되며, 이것은 건조과정에서 간극에 갇힌 독립된 공기에 의한 흐름 저항에 의한 것으로 판단된다. 측정된 모관흡수력과 체적함수비를 토대로 van Genuchten (1980)의 방법을 이용하여 흙-함수특성곡선(SWCC)을 예측하였다. 불포화 관련계수는 건조과정의 경우 ${\alpha}$는 0.399, n은 8.586, m은 0.884이며, 습윤과정의 경우 ${\alpha}$는 0.548, n은 5.625, m은 0.822로 산정되었다. 그리고 건조과정과 포화과정에서의 흙-함수특성곡선(SSCC)이 일치하지 않는 이력현상이 발생되었다. 불포화 관련계수를 이용하여 유효포화도와 흡입응력의 상관관계인 흡입응력특성곡선(SSCC)을 예측하였다. 흡입응력은 모관흡수력이 공기함입치 이상으로 작용할 경우 급격하게 감소하는 것으로 나타났다. 따라서 불포화토의 유효응력은 공기함입치 이상의 모관흡수력이 작용할 경우 포화토의 유효응력과 다른 값을 갖게 된다. 그리고 불포화상태에서의 동일한 유효포화도에서는 건조과정의 흡입응력이 더 크게 발생된다. 즉 흡입응력특성곡선(SSCC)에서도 건조과정과 포화과정이 일치하지 않는 이력현상이 발생되었다. 이는 흙-함수특성곡선(SWCC)의 이력현상에 기인하는 것으로 판단되며, 잉크병 효과와 접촉각 이력현상에 의해 발생되는 것으로 예상할 수 있다. 따라서 모래로 구성된 사면의 경우 지반 내 물이 유입되면서 흡입응력의 영향으로 사면 안정성에 유리하게 작용하다가 일정 흡입응력 이상이 되면 사면안정성에 불리하게 작용됨을 알 수 있다. 또한 실제 지반내 강우가 침투하는 과정은 습윤과정과 동일하므로 건조과정의 결과보다는 습윤과정의 결과를 활용하는 것이 바람직하다.

Keywords

References

  1. 박성완, 신길호, 김병수, 2006, 시험도로 노상토의 불포화 함수특성 및 이력현상, 한국도로학회 논문집, 8(2), 95-104.
  2. 송영석, 이남우, 황웅기, 김태형, 2010, 자동 흙-함수특성 곡선 시험장치 구축 및 활용, 지질공학, 20(3), 281-295.
  3. 송영석, 최진수, 2012, 불포화 이암풍화토에서의 흡입응력 이력현상, 한국지반공학회 논문집, 28(3), 55-66. https://doi.org/10.7843/kgs.2012.28.3.55
  4. Bishop, A.W., 1954, The use of pore pressure coefficients in practice, Geotechnique, 4(4), 148-152. https://doi.org/10.1680/geot.1954.4.4.148
  5. Bishop, A.W., 1959, The principle of effective stress", Teknisk Ukeblad I Samarbeide Med Teknikk, 106(39), 859-863.
  6. Childs, E.C. and Collis-Geoge, N., 1950, The permeability of porous materials, Proc. Royal Society, London, Series A, 210, 392-405.
  7. Edelfsen, N.E. and Anderson, A.B.C., 1943, Thermodynamics of soil moisture, Hilgardia, 15, 31-298. https://doi.org/10.3733/hilg.v15n02p031
  8. Fredlund, D.G. and Rahardjo, H., 1993, Soil mechanics for unsaturated soils, John Wiley & Sons Inc., New York, 517p.
  9. Kim, T.H., 2001, Moisture-induced tensile strength and cohesion in sand, Ph.D. thesis, Univ. of Colorado at Boulder, CO, 150p.
  10. Kumar, S. and Malik, R.S., 1990, Verification of quick capillary rise approach for determining pore geometrical characteristics in soils of varying texture, Soil Science, 150(6), 883-888. https://doi.org/10.1097/00010694-199012000-00008
  11. Laroussi, C.H., and DeBacker, L.W., 1979, Relations between geometrical properties of glass bead media and their main ${\psi}({\theta})$ hysteresis loops, Soil Science Society of America Journal, 43, 646-650. https://doi.org/10.2136/sssaj1979.03615995004300040004x
  12. Letey, J., Osborn, J., and Pelishek, R.E., 1962, Measurement of liquid-solid contact angles in soil and sand, Soil Science, 93, 149-153. https://doi.org/10.1097/00010694-196203000-00001
  13. Likos, W.J. and Lu, N., 2004, Hysteresis of capillary stress in unsaturated granular soil, Jour. of Engineering Mechanics, ASCE, 130(6), 646-655. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(646)
  14. Lu, N. and Likos, W.J., 2004, Unsaturated soil mechanics, John Wiley & Sons Inc., New York, 556p.
  15. Lu, N. and Likos, W.J., 2006, Suction stress characteristic curve for unsaturated soil, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 132(2), 131-142. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131)
  16. Lu, N., Godt, J.W. and Wu, D.T., 2010, A closed-form equation for effective stress in unsaturated soil, Water Resources Research, 46, W05515.
  17. Lu, N., Wu, B. and Tan, C.P., 2007, Tensile strength characteristics of unsaturated soils, Journal of Geotechnical and Geoenvironmental Engineering, 133(2), 144-154. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(144)
  18. Mualem, Y., 1976, A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resource Research, 12, 513-522. https://doi.org/10.1029/WR012i003p00513
  19. Narasimhan, T.N., 2005, Buckingham, 1907: An appreciation, Vadose Zone Journal, 4, 434-441. https://doi.org/10.2136/vzj2004.0126
  20. Schubert, H., 1975, Tensile strength of agglomerates, Powder Technology, 11, 107-119. https://doi.org/10.1016/0032-5910(75)80036-2
  21. Song, Y.S., Hwang, W.K., Jung, S.J., and Kim, T.H., 2012, A comparative study of suction stress between sand and silt under unsaturated conditions, Engineering Geology, 124, 90-97. https://doi.org/10.1016/j.enggeo.2011.10.006
  22. Terzaghi, K., 1943, Theoretical soil mechanics, John Wiley & Sons Inc., New York, 510p.
  23. van Genuchten, M.T., 1980, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America Journal, 44, 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  24. Wayllace, A. and Lu, N., 2012, A transient water release and imbibitions method for rapidly measuring wetting and drying soil water retention and hydraulic conductivity functions, Geotechnical Testing Journal, ASTM, 35, GTJ103596. https://doi.org/10.1520/GTJ103596

Cited by

  1. Stability Analysis of the Unsaturated Infinite Slope Considering Suction Stress under Steady Infiltration Condition vol.29, pp.9, 2013, https://doi.org/10.7843/kgs.2013.29.9.5