DOI QR코드

DOI QR Code

Assessment of Landslide Susceptibility of Physically Based Model Considering Characteristics of the Unsaturated Soil

불포화지반 특성을 고려한 물리적 사면 모델 기반의 산사태 취약성 분석

  • Kim, Jin Seok (Dept. of Geoinformation Engineering, Sejong University) ;
  • Park, Hyuck Jin (Dept. of Geoinformation Engineering, Sejong University)
  • 김진석 (세종대학교 지구정보공학과) ;
  • 박혁진 (세종대학교 지구정보공학과)
  • Received : 2014.02.10
  • Accepted : 2014.03.03
  • Published : 2014.02.28

Abstract

Rainfall-induced landslides are caused by reduction of effective stress and shear strength due to rainfall infiltration. In order to analyze the susceptibility of landslides, the statistical analysis approach has been used widely but this approach has the limitation which cannot take into account of landslide triggering mechanism. Therefore, the physically based model which can consider the process of landslide occurrence was proposed and commonly used. However, the most previous physically based model analyses evaluate and consider the strength characteristics for saturated soil only in the susceptibility analysis. But the strength parameters for unsaturated soil such as matric suction should be considered with the strength parameters for saturated soil since the shear strength in unsaturated soil also plays important role in the stability of slope. Consequently this study suggested the modified physically based slope model which can evaluate strength characteristics for both of saturated and unsaturated soils. In addition, this study evaluated the thickness of saturated part in slope with rainfall intensity and hydraulic characteristics of slope on the basis of physically based model. In order to evaluate the feasibility, the proposed model was applied to practical example in Jinbu area, Gangwon-do, which was experienced large amount of landslides in July 2006. The ROC graph analysis was used to evaluate the validation of the model, and the analysis results were compared with the results of the previous analysis approach.

강우로 인해 유발되는 산사태는 강우침투로 인한 사면내 간극수압의 증가와 흙의 유효응력 및 전단강도의 감소로 인해 발생한다. 현재 광역적인 지역을 대상으로 산사태의 발생가능성을 분석하는데 주로 활용되고 있는 통계적 분석기법은 이러한 산사태 발생메커니즘을 고려할 수 없는 단점을 갖고 있다. 따라서 최근 들어 산사태의 발생메커니즘을 고려할 수 있는 물리적 사면모델이 산사태 취약성 분석을 수행하는데 많이 적용되고 있다. 그러나 사면 모델을 활용하는 기존의 연구는 강우의 침투로 발생하는 포화층 상부의 불포화층의 특성을 거의 고려하지 않고 포화층의 강도 특성만을 고려하여 분석을 수행하여 왔다. 따라서 본 연구에서는 포화층의 강도특성과 함께 불포화층의 강도 특성을 고려한 수정 전단강도 식을 활용하여 산사태 취약성 분석을 수행하고자 하였다. 또한 강우강도와 지반의 수리적 특성을 고려하여 지하수위 산정이 가능한 포화깊이비 계산식을 사면 모델과 결합하여 시간에 따른 지하수위 변화를 계산하고 이를 취약성 분석에 활용하였다. 본 연구에서는 실제 집중호우가 발생한 강원도 평창군 진부면 일대지역의 2006년 7월 14 ~ 16일의 강우강도를 이용하여 3일간의 안전율을 계산하여 산사태 취약성 분석을 수행하였으며 그 결과를 ROC 분석을 통해 실제 산사태 발생 위치와 비교하여 예측의 정확성을 분석하였다.

Keywords

References

  1. Chae, B.G., Lee, S.H., Song, Y.S., Cho, Y.C. and Seo, Y.S. (2007) Characterization on the relationships among rainfall intensity, slope angle and pore water pressure by a flume test : in case of gneissic weathered soil. Journal of Engineering Geology, v.17, p.57-64.
  2. Fawcett, T. (2006) An introduction to ROC analysis. Pattern Recognition Letters, v.27, p.861-874. https://doi.org/10.1016/j.patrec.2005.10.010
  3. Frattini, P., Crosta, G.B., Fusi, N. and Negro, P.D. (2004) Shallow landslides in pyroclastic soils: a distributed modeling approach for hazard assessment. Engineering Geology, v.73, p.277-295. https://doi.org/10.1016/j.enggeo.2004.01.009
  4. Fredlund, D.G. and Rahardjo, H. (1993) Soil Mechanics for Unsaturated Soils. John Wiley & Sons, 517p.
  5. Fredlund, D.G., Xing, A., Fredlund, M.D. and Barbour, S.L. (1996) The relationship of the unsaturated soil shear strength to the soil-water characteristic curve. Can. Geothech. J., v.33, p.440-448. https://doi.org/10.1139/t96-065
  6. Godt, J.W., Baum, R.L., Savage, W.Z., Salciarini, D., Schulz, W.H. and Harp, E.L. (2008) Transient deterministic shallow landslide modeling: requirements for susceptibility and hazard assessments in a GIS framework. Engineering Geology, v.102, p.214-226. https://doi.org/10.1016/j.enggeo.2008.03.019
  7. Ho, J.Y., Lee, K.T., Chang, T.C., Wang, Z.Y. and Liao, Y.H. (2012) Influences of spatial distribution of soil thickness on shallow landslide prediction. Engineering Geology, v.124, p.38-46. https://doi.org/10.1016/j.enggeo.2011.09.013
  8. Kim, G.H., Yune, C.Y., Lee, H.G. and Hwang, J.S. (2011) Debris flow analysis of landslide area in inje using GIS. Journal of the Korean Society of Surveying Geodesy Photogrammetry and Cartography, v.29, p.47-53. https://doi.org/10.7848/ksgpc.2011.29.1.47
  9. Kim, J.H., Park, S.W., Jeong, S.S. and Yoo, J.H. (2002) A study of stability analysis on unsaturated weathered slopes based on rainfall-induced wetting, The Journal of Korean Geotechnical Society, v.18, p.123-136.
  10. Kim, J.Y. and Park, H.J. (2013) A comparative study of fuzzy relationship and ANN for landslide susceptibility in Pohang area. Econ. Environ. Geol., v.46, p.301-312. https://doi.org/10.9719/EEG.2013.46.4.301
  11. Kim, K.S., Kim, W.Y., Chae, B.G., Song, Y.S. and Cho, Y.C. (2005) Engineering geological analysis of landslide on natural slopes induced by rainfall. Engineering Geology, v.15, p.105-121.
  12. Lancellotta, R. (2004) Geotecnica. Zanichelli, 481p.
  13. Lee, J.S., Song, Y.K. and Kim, Y.T. (2012) Slope stability characteristic of unsaturated weathered granite soil in Inje considering antecedent rainfall. Korean Society of Hazard Mitigation, v.12, p.85-92. https://doi.org/10.9798/KOSHAM.2012.12.4.085
  14. Lee, J.H. and Park, H.J. (2012) Assessment of landslide susceptibility using a coupled infinite slope model and hydrologic model in Jinbu area, Gangwon-Do. Econ. Environ. Geol., v.45, p.697-707. https://doi.org/10.9719/EEG.2012.45.6.697
  15. Li, T.F. and Chi, Y.Y. (2011) Rainfall induced landslide risk at Lushan, Taiwan. Engineering Geology, v.123, p.113-121. https://doi.org/10.1016/j.enggeo.2011.03.006
  16. Liao, Z., Hong, Y., Kirschbaum, D., Adler, R., Gourley, J.J. and Wooten, R. (2011) Evaluation of TRIGRS's predictive skill for Hurricane-triggered landslides: A case study in Macon country, North Carolina. Nat. Hazard, v.43, p.245-256.
  17. Liu, C. and Wu, C. (2008) Mapping susceptibility of rainfall- triggered shallow landslides using a probabilistic approach. Environmental Geology, v.55, p.907-915 https://doi.org/10.1007/s00254-007-1042-x
  18. Lu, N. and Likos, W.J. (2004) Unsaturated Soil Mechanics. John Wiley, 584p.
  19. Montgomery, D.R. and Dietrich, W.E. (1994) A physically based model for the topographic control on shallow landsliding. Water Resources Research, v.30, p.1153-1171. https://doi.org/10.1029/93WR02979
  20. Montrasio, L. and Valentino, R. (2008) A model for triggering mechanisms of shallow landslides. Nat.Hazards Earth Syst. Sci., v.8, p.1149-1159. https://doi.org/10.5194/nhess-8-1149-2008
  21. Montrasio, L., Valentino, R. and Losi, G.L. (2011) Towards a real-time susceptibility assessment of rainfall- induced shallow landslides on a regional scale. Nat. Hazards Earth Syst. Sci., v.11, p.1927-1947. https://doi.org/10.5194/nhess-11-1927-2011
  22. National Disaster Management Institute (2000) Fundamental Issues for Landslide Hazards Avoidance or Mitigation Plans, National Disaster Management Institute, 276p.
  23. Nova, R. (2010) Soil Mechanics. Wiley-ISTE, London, 399p.
  24. Park, H.J., Lee, J.H and Woo, I. (2013) Assessment of rainfall-induced shallow landslide susceptibility using a GIS-based probabilistic approach. Engineering Geology, v.161, p.1-15. https://doi.org/10.1016/j.enggeo.2013.04.011
  25. Saulnier, G. M., Beven, K. and Obled, C. (1997) Including spatially variable effective soil depths in TOPMODEL. J. Hydrol., v.202, p.158-172. https://doi.org/10.1016/S0022-1694(97)00059-0
  26. Saxton, K.E. and Lenz, A.T. (1967) Antecedent retention indexes predict soil moisture. Journal of Hydraulic Division American Society of Civil Engineers, v.93, p.223-241.
  27. Salciarini, D., Godt, J.W., Savage, W.Z., Conversini, P. Baum, R.L. and Michael, J.A. (2006) Modeling regional initiation of rainfall-induced shallow landslide in the eastern Umbria Region of central Italy. Landslides, v.3, p.181-194. https://doi.org/10.1007/s10346-006-0037-0
  28. Schmidt, J., Turek, G., Clark, M.P., Uddstrom, M. and Dymond, J.R. (2008) Probabilistic forecasting of shallow, rainfall-triggered landslides using real-time numerical weather predictions. Nat. Hazards Earth Syst. Sci., v.8, p.349-357. https://doi.org/10.5194/nhess-8-349-2008
  29. Shin, H.K. (2007) A Study on the Analysis of the Groundwater Level and Characteristic of the Slope-Related Disasters according the Rainfall Intensity and the Infiltration. The Univ. of Seoul, master's thesis, 78p.
  30. Silva, D. (2000) Analisi sperimentale del comportamento di terreni statificati in pendio. Univ. of Parma, Degree Thesis.
  31. Yune, C.Y., Jun, K.J., Kim, K.S., Kim, G.H. and Lee, S.W. (2010) Analysis of slope hazard-triggering rainfall characteristics in Gangwon province by database construction. The Journal of Korean Geotechnical Society, v.26, p.27-38.
  32. Zhou, G., Esaki, T. Mitani, T., Xie, M. and Mori, J. (2003) Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach. Engineering Geology, v.68, p.373-386. https://doi.org/10.1016/S0013-7952(02)00241-7
  33. Zizioli, D., Meisina, C., Valentino, R. and Montrasio, L. (2013) Comparison between different approaches to modeling shallow landslide susceptibility: a case history in Oltrepo Pavese, Northern Italy. Nat. Hazards Earth Syst. Sci., v.13, p.559-573. https://doi.org/10.5194/nhess-13-559-2013

Cited by

  1. Maintenance of Hazardous Steep Slopes on National Park Trails vol.26, pp.1, 2016, https://doi.org/10.9720/kseg.2016.1.129