• Title/Summary/Keyword: Subtraction method

Search Result 433, Processing Time 0.033 seconds

Implementation of Motion Detection based on Extracting Reflected Light using 3-Successive Video Frames (3개의 연속된 프레임을 이용한 반사된 빛 영역추출 기반의 동작검출 알고리즘 구현)

  • Kim, Chang Min;Lee, Kyu Woong
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.3
    • /
    • pp.133-138
    • /
    • 2016
  • Motion detection algorithms based on difference image are classified into background subtraction and previous frame subtraction. 1) Background subtraction is a convenient and effective method for detecting foreground objects in a stationary background. However in real world scenarios, especially outdoors, this restriction, (i.e., stationary background) often turns out to be impractical since the background may not be stable. 2) Previous frame subtraction is a simple technique for detecting motion in an image. The difference between two frames depends upon the amount of motion that occurs from one frame to the next. Both these straightforward methods fail when the object moves very "slightly and slowly". In order to efficiently deal with the problem, in this paper we present an algorithm for motion detection that incorporates "reflected light area" and "difference image". This reflected light area is generated during the frame production process. It processes multiplex difference image and AND-arithmetic of bitwise. This process incorporates the accuracy of background subtraction and environmental adaptability of previous frame subtraction and reduces noise generation. Also, the performance of the proposed method is demonstrated by the performance assessment of each method using Gait database sample of CASIA.

Noise-Robust Speech Recognition Using Histogram-Based Over-estimation Technique (히스토그램 기반의 과추정 방식을 이용한 잡음에 강인한 음성인식)

  • 권영욱;김형순
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.53-61
    • /
    • 2000
  • In the speech recognition under the noisy environments, reducing the mismatch introduced between training and testing environments is an important issue. Spectral subtraction is widely used technique because of its simplicity and relatively good performance in noisy environments. In this paper, we introduce histogram method as a reliable noise estimation approach for spectral subtraction. This method has advantages over the conventional noise estimation methods in that it does not need to detect non-speech intervals and it can estimate the noise spectra even in time-varying noise environments. Even though spectral subtraction is performed using a reliable average noise spectrum by the histogram method, considerable amount of residual noise remains due to the variations of instantaneous noise spectrum about mean. To overcome this limitation, we propose a new over-estimation technique based on distribution characteristics of histogram used for noise estimation. Since the proposed technique decides the degree of over-estimation adaptively according to the measured noise distribution, it has advantages to be few the influence of the SNR variation on the noise levels. According to speaker-independent isolated word recognition experiments in car noise environment under various SNR conditions, the proposed histogram-based over-estimation technique outperforms the conventional over-estimation technique.

  • PDF

A Study on the Realization of Wireless Home Network System Using High-performance Speech Recognition in Variable Position (가변위치 고음성인식 기술을 이용한 무선 홈 네트워크 시스템 구현에 관한 연구)

  • Yoon, Jun-Chul;Choi, Sang-Bang;Park, Chan-Sub;Kim, Se-Yong;Kim, Ki-Man;Kang, Suk-Youb
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.991-998
    • /
    • 2010
  • In realization of wireless home network system using speech recognition in indoor voice recognition environment, background noise and reverberation are two main causes of digression in voice recognition system. In this study, the home network system resistant to reverberation and background noise using voice section detection method based on spectral entropy in indoor recognition environment is to be realized. Spectral subtraction can reduce the effect of reverberation and remove noise independent from voice signal by eliminating signal distorted by reverberation in spectrum. For effective spectral subtraction, the correct separation of voice section and silent section should be accompanied and for this, improvement of performance needs to be done, applying to voice section detection method based on entropy. In this study, experimental and indoor environment testing is carried out to figure out command recognition rate in indoor recognition environment. The test result shows that command recognition rate improved in static environment and reverberant room condition, using voice section detection method based on spectral entropy.

Implementation of a Robust Speech Recognizer in Noisy Car Environment Using a DSP (DSP를 이용한 자동차 소음에 강인한 음성인식기 구현)

  • Chung, Ik-Joo
    • Speech Sciences
    • /
    • v.15 no.2
    • /
    • pp.67-77
    • /
    • 2008
  • In this paper, we implemented a robust speech recognizer using the TMS320VC33 DSP. For this implementation, we had built speech and noise database suitable for the recognizer using spectral subtraction method for noise removal. The recognizer has an explicit structure in aspect that a speech signal is enhanced through spectral subtraction before endpoints detection and feature extraction. This helps make the operation of the recognizer clear and build HMM models which give minimum model-mismatch. Since the recognizer was developed for the purpose of controlling car facilities and voice dialing, it has two recognition engines, speaker independent one for controlling car facilities and speaker dependent one for voice dialing. We adopted a conventional DTW algorithm for the latter and a continuous HMM for the former. Though various off-line recognition test, we made a selection of optimal conditions of several recognition parameters for a resource-limited embedded recognizer, which led to HMM models of the three mixtures per state. The car noise added speech database is enhanced using spectral subtraction before HMM parameter estimation for reducing model-mismatch caused by nonlinear distortion from spectral subtraction. The hardware module developed includes a microcontroller for host interface which processes the protocol between the DSP and a host.

  • PDF

Critical Banded Wavelet Packet-Based Spectral Subtractions for Speech Enhancement (음성신호개선을 위한 임계대역 웨이블렛 패킷 기반의 스펙트럼 차감법)

  • Chang, Sung-Wook;Yang, Sung-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.4E
    • /
    • pp.125-133
    • /
    • 2004
  • In this paper, we propose a critical banded wavelet packet-based spectral subtraction for speech enhancement. Critical banded wavelet packet, which reflects the human auditory system, may lead to minimization of intelligibility loss and quality improvement of the enhanced speech in the spectral domain, when combined with an appropriate spectral subtraction gain function. The proposed method shows better performance than the conventional one in comparative assessments. We also show that, for effective evaluation of enhanced speech, it is essential to consider the characteristics of speech quality measures.

Speech Recognition in Noisy Environrrents using Histogram-based Over-estimation (히스토그램 기반의 Over-estimation을 이용한 잡음환경에서의 음성인식)

  • 권영욱
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.262-266
    • /
    • 1998
  • In the speech recognition under the noisy environments, reducing the mismatch introduced between training and testing environments is an important issue, and spectral subtraction is widely used technique because of its simplicity and relatively good performance in noisy environments. In this paper, we introduced histogram method as a reliable noise estimationi approach for spectral subtraction. To deal with the problem of residual noise after spectral subtraction, we proposed a new ove-estimation technique based on distribution characteristics of histogram used for noise estimation. Since the proposed technique decides the degree of over-estimation adaptively according to the measured noise distribution, it can cope with the SNR variations effectively in compared with the conventional over-estimation technique.

  • PDF

Background Subtraction using Random Walks with Restart

  • Kim, Tae-Hoon;Lee, Kyoung-Mu;Lee, Sang-Uk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.63-66
    • /
    • 2009
  • Automatic segmentation of foreground from background in video sequences has attracted lots of attention in computer vision. This paper proposes a novel framework for the background subtraction that the foreground is segmented from the background by directly subtracting a background image from each frame. Most previous works focus on the extraction of more reliable seeds with threshold, because the errors are occurred by noise, weak color difference and so on. Our method has good segmentations from the approximate seeds by using the Random Walks with Restart (RWR). Experimental results with live videos demonstrate the relevance and accuracy of our algorithm.

  • PDF

Comparison of Two Methods for Stationary Incident Detection Based on Background Image

  • Ghimire, Deepak;Lee, Joonwhoan
    • Smart Media Journal
    • /
    • v.1 no.3
    • /
    • pp.48-55
    • /
    • 2012
  • In general, background subtraction based methods are used to detect the moving objects in visual tracking applications. In this paper we employed background subtraction based scheme to detect the temporarily stationary objects. We proposed two schemes for stationary object detection and we compare those in terms of detection performance and computational complexity. In the first approach we used single background and in the second approach we used dual backgrounds, generated with different learning rates, in order to detect temporarily stopped object. Finally, we used normalized cross correlation (NCC) based image comparison to monitor and track the detected stationary object in a video scene. The proposed method is robust with partial occlusion, short time fully occlusion and illumination changes, as well as it can operate in real time.

  • PDF

Confidence-based Background Subtraction Algorithm for Moving Cameras (움직이는 카메라를 위한 신뢰도 기반의 배경 제거 알고리즘)

  • Mun, Hyeok;Lee, Bok Ju;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.30-35
    • /
    • 2017
  • Moving object segmentation from a nonstationary camera is a difficult problem due to the motion of both camera and the object. In this paper, we propose a new confidence-based background subtraction technique from moving camera. The method is based on clustering of motion vectors and generating adaptive multi-homography from a pair of adjacent video frames. The main innovation concerns the use of confidence images for each foreground and background motion groups. Experimental results revealed that our confidence-based approach robustly detect moving targets in sequences taken by a freely moving camera.

  • PDF

Acoustic Feedback Cancellation Using Spectral Subtraction (주파수 차감법을 이용한 음향 궤환 제거)

  • 류원석;박장식;김대경;손경식
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.927-930
    • /
    • 2000
  • An acoustic feedback canceller has some problems that are difficult to remove the acoustic feedback through acoustic feedback path. In this paper, a new method of acoustic feedback cancellation scheme is proposed using spectral subtraction. Microphone input signals are subtracted by estimated feedback signals which are estimated by Wiener filter using the correlation between microphone input signals and output signals of receiver.

  • PDF