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(a) Initial seeds               (b) GC                 (c) RW                (d) Our Algorithm 

Fig. 4: Comparison of our algorithm with GC and RW on ‘A_anto’ sequence (200 frames) [8]. (b),(c) and (d) are the 

segmentation results of GC, RW and our algorithm, respectively. ( 0.0002c = ) 

1P D W−=                  (6) 
where 1( ,..., )ND diag d d= , 

1

Ni ij
j

d w
=

= ∑ . If ,m lrr  are 
inserted into (2) by our definition, the likelihoods ( | )ip x l  
are achieved such as: 

1[ ( | )]i l
Np x l Qd× =

r
            (7) 

where 1[ ]l i
Nd d ×=

r
 is the vector with 1id =  if i lx X∈  

and 0id =  otherwise. 
 
Assume that the prior probability ( )p l  in (1) is uniform. 
Using this likelihood in (7), the decision rule of each pixel 

ix  for segmentation is as follows: 

arg max ( | ) arg max ( | )i i i

l l
R p l x p x l= =      (8) 

The segmentation is obtained by assigning the label iR  to 
each pixel ix . 
 

3. Experimental Results 
 
Our algorithm has two parameters: a color variance σ  
and a restarting probability c . They are fixed with the 
same value for all the segmentation algorithms we tested. 
We compare the performance of our algorithm with GC [1] 
and RW [3] on live videos. We utilized a dataset of live 
videos [8][9]. In Fig. 4 and Fig. 5, the segmentations were 
produced from the three different algorithms on these 
videos. The foreground boundary is drawn in red color 
overlaid on the original frame. Compared with the 
segmentations from GC and RW, our algorithm has better 
segmentations qualitatively. GC and RW have a hard 
constraint that the seeds hold the initial labels. Thus, the 

selection of the initial seeds is very important. To improve 
performance, the additional constraint is needed such as [6]. 
Our algorithm is robust to the initial errors in Fig. 4(d). 
This comparison confirms the relevance and accuracy of 
our algorithm. 
 

4. Conclusion 
 
This paper presents a novel generative background 
subtraction algorithm in the Bayesian Framework. By 
using RWR, our work produces significant improvement in 
performance as shown in the experiment. 
 
For the computation of RWR, the restarting probability c
was chosen empirically. However it is not optimal for 
every video. If we can control it well, better segmentations 
will be obtained. Thus our future work will include the 
automatic selection of the optimal value of this parameter.  
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(a) Initial seeds               (b) GC                 (c) RW                (d) Our Algorithm 

Fig. 5: Comparison of our algorithm with GC and RW on ‘human_in’ sequence (30 frames) [9]. (b),(c) and (d) are 

the segmentation results of GC, RW and our algorithm, respectively. ( 0.004c = ) 
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