• Title/Summary/Keyword: Subsurface

Search Result 1,549, Processing Time 0.04 seconds

A Coupled Hydro-Mechanical Analysis of a Deep Geological Repository to Assess Importance of Mechanical Factors of Bentonite Buffer (심층 처분 시설의 수리 역학적 해석을 통한 벤토나이트 버퍼의 역학적 영향 인자 중요도 평가)

  • Jeon, Yoon-Soo;Lee, Seung-Rae;Kim, Min-Seop;Jeon, Jun-Seo;Kim, Min-Jun
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.439-455
    • /
    • 2019
  • A buffer is the major component of a high level radioactive waste repository. Due to their thermal conductivity and low permeability, bentonites have been considered as a key component of a buffer system in most countries. The deep geological condition generates ground water inflow and results in swelling pressure in the buffer and backfill. Investigation of swelling pressure of bentonite buffer is an important task for the safe disposal system. The swelling pressure that can be critical is affected by mechanical and hydro properties of the system. Therefore, in this study, a sensitivity analysis was conducted to examine the effect of hydro-mechanical (HM) behaviors in the MX-80 bentonite. Based on the results of the swelling pressure generation with HM model parameters, a coupled HM analysis of an unsaturated buffer and backfill in a deep geological repository was also carried out to investigate the major factor of the swelling pressure generation.

A Review on the Current Methods for Extracting DNA from Soil and Sediment Environmental Samples (토양 및 퇴적토 환경 시료로부터 DNA 추출하는 방법에 대한 고찰)

  • Yoo, Keun-Je;Lee, Jae-Jin;Park, Joon-Hong
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.57-67
    • /
    • 2009
  • In soil and sediment environment, microorganisms play major roles in biochemical cycles of ecological significant elements. Because of its ecological significance, microbial diversity and community structure information are useful as indexes for assessing the quality of subsurface ecological environment and bioremediation. To achieve more accurate assessment, it is requested to gain sufficient yield and purity of DNA extracted from various soil and sediment samples. Although there have been a large number of basic researches regarding soil and sediment DNA extraction methods, little guideline information is given in literature when choosing optimal DNA extraction methods for various purposes such as environmental ecology impact assessment and bioremediation capability evaluation. In this study, we performed a thorough literature review to compare the characteristics of the current DNA extraction methods from soil and sediment samples, and discussed about considerations when selecting and applying DNA extraction methods for environmental impact assessment and bioremediation capability evaluation. This review suggested that one approach is not enough to gain the suitable quantity and yield of DNA for assessing microbial diversity, community structure and population dynamics, and that a careful attention has to be paid for selecting an optimal method for individual environmental purpose.

Geomagnetic Field Properties and Magnetic Interpretation in the Southern Part of the Ulleung Basin (鬱陵盆地 남단해역의 地磁場 特性 및 磁氣異常 解析)

  • 박찬홍;석봉출
    • 한국해양학회지
    • /
    • v.26 no.2
    • /
    • pp.117-132
    • /
    • 1991
  • Marine total magnetic intensity over the southern part of the Ulleung Basin and geomagnetic data measured at a land base station are analyzed. Fourteen days observation of geomagnetic field at a fixed on-land base station showed how the geomagnetic field around the study area behaves. geomagnetic data at the base station can also be used as correction data for a diurnal variation. Magnetic anomalies in the study area do not reflect an effect of sea bottom topography but mainly subsurface basement. The southern part of the Ulleung Basin can be devided into two zones according to a different anomaly pattern; along the coastal shelves the isolated anomalies with a short wave and a strong amplitude are dominant, and toward the open sea the anomalies become much more subdued. The high anomaly zone adjoined to land is interpreted to be caused by granitic intrusives or volcanic rocks, and the weak anomaly zone to the outer sea to be arisen from an existence of deep basement. A spectrum analysis is applied to estimate magnetic basement depths from three anomaly profiles with a long period and a weak amplitude toward the outer sea. The calculated depths are 7.0km, 5.0km, and 2.6km respectively from outer profile. The basement might be correlated with the mixed layer of tuff, basalt, and sediment, which had been defined as L-2 layer in the Yamato basin and the Japan Basin.

  • PDF

Soil Moisture Modelling at the Topsoil of a Hillslope in the Gwangneung National Arboretum Using a Transfer Function (전이함수를 통한 광릉 산림 유역의 토양수분 모델링)

  • Choi, Kyung-Moon;Kim, Sang-Hyun;Son, Mi-Na;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.2
    • /
    • pp.35-46
    • /
    • 2008
  • Soil moisture is one of the important components in hydrological processes and also controls the subsurface flow mechanism at a hillslope scale. In this study, time series of soil moisture were measured at a hillslope located in Gwangneung National Arboretum, Korea using a multiplex Time Domain Reflectometry(TDR) system measuring soil moisture with bi-hour interval. The Box-Jenkins transfer function and noise model was used to estimate spatial distributions of soil moisture histories between May and September, 2007. Rainfall was used as an input parameter and soil moisture at 10 cm depth was used as an output parameter in the model. The modeling process consisted of a series of procedures(e.g., data pretreatment, model identification, parameter estimation, and diagnostic checking of selected models), and the relationship between soil moisture and rainfall was assessed. The results indicated that the patterns of soil moisture at different locations and slopes along the hillslope were similar with those of rainfall during the measurment period. However, the spatial distribution of soil moisture was not associated with the slope of the monitored location. This implies that the variability of the soil moisture was determined more by rainfall than by the slope of the site. Due to the influence of vegetation activity on soil moisture flow in spring, the soil moisture prediction in spring showed higher variability and complexity than that in early autumn did. This indicates that vegetation activity is an important factor explaining the patterns of soil moisture for an upland forested hillslope.

Studies on the Phosphatic fertilizer Application Grassland I. Recidual effect of phosphatic fertilizer botanical composition and mineral contents of pasture plants in mixed sward (초지에 대한 인산질비료의 잔류효과에 의한 연구 II. 혼파초지의 식생구성 및 목초의 무기태함량에 대한 인산질비료의 잔류효과)

  • Park, Geun-Je;Kim, Jeong-Gap;Seo, Sung;Kim, Meing-Jooung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.1
    • /
    • pp.19-26
    • /
    • 1997
  • To find out the residual effect of phosphate fertilization on botanical composition, mineral contents and mineral nutrient deprivation of pasture plants, this experiment was arranged as a randomized complete block design with six treatments(0-0, 50-50, 100-65, 150-65, 200-65 and 250-65kg $P_2O_5$/ha), those were composed of three P,O, fertilization level(0, 50 and 65kg P,OJha) after phosphate fertilization trial with six treatments(0, 50, 100, 150, 200 and 250kg $P_2O_5$/ha) from 1989 to 1992, and conducted at hilly land in Kwangju, Kyonggi Province 60m 1993 to 1994. The results obtained are summarized as follows: The botanical composition of pasture plants without phosphate fertilization was very poor. With increasing available phosphate of soil, the percentage of grasses and legumes were remarkably increased and weeds was decreased. With 150-65kg $P_2O_5$/ha application for two years, the average DM yield was composed of 80.6% grasses, 15.4% legume and 4.0% weeds, the percentage was similar to that of 200-65kg $P_2O_5$/ha. As available phosphate of soil increase, P, K and Mg content of pasture plants were increased, but Ca/P ratio was lowed and the other mineral contents tended not to be regular. The mineral nutrient contents deprived by DM yield was increased as available phosphate of soil was increased, but those were not different between 150-65 and 250-65kg $P_2O_5$/ha. However, mineral nutrient of $P_2O_5$,$K_2O$ and MgO were higher in 200-65 and 250-65kg $P_2O_5$/ha. Most of applied mineral elements were accumulated at a subsurface(0-2.5cm) of grasslands, and mineral tended to be decrease than that of soil chemical analysis before the experiment of residual effect of phosphate fertilization.

  • PDF

A Study on Soil Characteristics of Paddy Fields with Re-established Soils

  • Sonn, Yeon-Kyu;Moon, Yong-Hee;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hye-Rae;Hyun, Byung-Keun;Shin, Kook-Sik;Han, Kyeong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.3
    • /
    • pp.194-204
    • /
    • 2015
  • Six study sites in Gumi, Goryeong in Gyeongbuk province and Naju in Jeonnam province were selected to investigate soil properties of poorly drained horizons in paddy soils. The horizons were re-established layers which were parent material layers originated from fluvial deposits. Topsoil layers were differentiated from piled parent materials while soil structure of the topsoil layer was massive with striated microstructure. Compaction at soil re-establishment and a lack of structure and aggregate development in these soils may cause the limitation of vertical water movement and result in poorly drained horizons. Soil samples were taken from paddy fields with top soils of sandy loam, silt loam and silty clay loam and re-established soils of coarse and fine texture. The samples were taken from each horizon for the analyses of soil chemical and mineral properties. Soils with re-established soils of coarse texture had greater amounts of sands from top soil texture distributions, while soils with fine texture had greater amounts of silts. Chemical properties of top soils were analyzed from rice cultivated soils at the time of re-establishments and one year after the re-establishments. The coarse texture of the re-established horizons decreased in EC values from 0.23 to $0.11(dS\;m^{-1})$, available phosphate values from 112 to $54(mg\;kg^{-1})$, and exchangeable Ca values from 6.6 to $4.9(cmol_c\;kg^{-1})$. On the other hand, soils with fine texture showed decrease only in pH and exchangeable Ca values. Especially, organic matter and available phosphate contents showed heterogeneous distributions from each horizon. This result may be caused by mixture of plough layer and subsurface layer during and consolidation. Hydraulic conductivity values were low at the boundaries of top soil and parent material layers except SL/coarse soil. Soil microstructure was massive structure without soil clods or pores and showed striated structure. Therefore, re-established paddy fields with fluvial deposits as parent material layers showed limited vertical movements of soil water because of occurrence of compacted layers and less-development of soil clods and aggregates.

Development of small constructed wetland for urban and roadside areas (도시 및 도로 조경공간을 활용한 소규모 인공습지 조성 기술)

  • Kang, Chang-Guk;Maniquiz, Marla C.;Son, Young-Gyu;Cho, Hye-Jin;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.231-242
    • /
    • 2011
  • Recently, the green spaces in the urban areas were greatly reduced due to urbanization and industrialization. As urban structures such as roads and buildings are built, the amount of impervious area within a watershed increases. High impervious surfaces are the common causes of high runoff volumes as the soil infiltration capacity decreases and the volume and rate of runoff increase thereby decreasing the groundwater recharge. These effects are causing many environmental problems, such as floods and droughts, climate change, heat island phenomenon, drying streams, etc. Most cities attempted to reduce sewer overflows by separating combined sewers, expanding treatment capacity or storage within the sewer system, or by replacing broken or decaying pipes. However, these practices can be enormously expensive than combined sewer overflows. Therefore, in order to improve these practices, alternative methods should be undertaken. A new approach termed as "Low Impact Development (LID)" technology is currently applied in developed countries around the world. The purpose of this study was to effectively manage runoff by adopting the LID techniques. Small Constructed Wetland(Horizontal Subsurface Flow, HSSF) Pilot-scale reactors were made in which monitoring and experiments were performed to investigate the efficiency of the system in removing pollutants from runoff. Based on the results of the Pilot-plant experiments, TSS, $COD_{Cr}$, TN, TP, Total Pb removal efficiency were 95, 82, 35, 91 and 57%, respectively. Most of the pollutants were reduced after passing the settling tank and the vertical filter media. The results of this study can contribute to the conservation of aquatic ecosystems and restoration of natural water cycle in the urban areas.

Analysis on Spatiotemporal Variability of Erosion and Deposition Using a Distributed Hydrologic Model (분포형 수문모형을 이용한 침식 및 퇴적의 시.공간 변동성 분석)

  • Lee, Gi-Ha;Yu, Wan-Sik;Jang, Chang-Lae;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.11
    • /
    • pp.995-1009
    • /
    • 2010
  • Accelerated soil erosion due to extreme climate change, such as increased rainfall intensity, and human-induced environmental changes, is a widely recognized problem. Existing soil erosion models are generally based on the gross erosion concept to compute annual upland soil loss in tons per acre per year. However, such models are not suitable for event-based simulations of erosion and deposition in time and space. Recent advances in computer geographic information system (GIS) technologies have allowed hydrologists to develop physically based models, and the trend in erosion prediction is towards process-based models, instead of conceptually lumped models. This study aims to propose an effective and robust distributed rainfall-sediment yield-runoff model consisting of basic element modules: a rainfall-runoff module based on the kinematic wave method for subsurface and surface flow, and a runoff-sediment yield-runoff model based on the unit stream power method. The model was tested on the Cheoncheon catchment, upstream of the Yongdam dam using hydrological data for three extreme flood events due to typhoons. The model provided acceptable simulation results with respect to both discharge and sediment discharge even though the simulated sedigraphs were underestimated, compared to observations. The spatial distribution of erosion and deposition demonstrated that eroded sediment loads were deposited in the cells along the channel network, which have a short overland flow length and a gentle local slope while the erosion rate increased as rainfall became larger. Additionally, spatially heterogeneous rainfall intensity, dependant on Thiessen polygons, led to spatially-distinct erosion and deposition patterns.

Experiments on the GPR Reposnse of the Organic Hydrocarbons (유류오염물질의 GPR 반응에 대한 모델 실험 연구)

  • 김창렬
    • Economic and Environmental Geology
    • /
    • v.37 no.2
    • /
    • pp.185-193
    • /
    • 2004
  • A physical model experiment was conducted using a sand and gravel-filled tank model, to investigate the influence on the GPR response of LNAPL vapor phase effects in the unsaturated zone and of residual phase of LNAPL trapped in the saturated zone. Background measurements of GPR were made with only water in the tank using a fluctuating water table model. Gasoline was, then, injected into the bottom of the model tank to simulate a subsurface discharge from a leaking pipe or tank at depth, obtaining GPR data with rising and lowering of water table. Results from the experiment show the GPR sensitivity to the changes in the moisture content in the vadose zone and its effectiveness for monitoring minor fluctuation of the water table. The results also demonstrate a potential of GPR for monitoring possible vapor phase effects of volatile hydrocarbons in the vadose zone as a function of time, and for detecting the effects of residual phase of hydrocarbons in the water saturated system. In addition, the results provide the basis for a strategy that has the potential to successfully detect and delineate residual LNAPL contamination in the water-saturated system at field sites where the conditions are similar to those simulated in the physcial models described herein.

Analysis of Quaternary Sedimentary Environment based on 3D Geological Modeling for Saban-ri, Haeri-myeon, Gochang (고창군 해리면 사반리 일대 3차원 지질모델링을 활용한 제4기 퇴적환경분석)

  • Shin, Haein;Yu, Jaehyung;Bae, Sungji;Yang, Dongyoon;Han, Min
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.291-299
    • /
    • 2016
  • This study examined stratigraphic research containing extreme climate event during Quaternary period in Saban-ri, Haeri-myeon, Gochang by constructing 3D topographic model and 3D geological model. As a result of 3D topographic model and subsurface geological model, the geology of study area accumulated bedrock, Pleistocene series, and Holocene series chronologically. Most of the study area consist of bedrock on basement and Holocene series on upper layer. Additionally, Pleistocene series are presented as lens-shaped deposit on eastern part, and wedge-shaped deposit on northeastern part. Holocene layers consist of sand and clay-silt layer deposited sequentially where implies fluvial deposits on transgression environment. Distinctively, Pleistocene clayey silt layer and Holocene sand layer on eastern are observed as pond shape deposits that are considered as storm-related deposits originated from overwash system caused by extreme paleoclimate.