DOI QR코드

DOI QR Code

Development of small constructed wetland for urban and roadside areas

도시 및 도로 조경공간을 활용한 소규모 인공습지 조성 기술

  • 강창국 (공주대학교 건설환경공학부) ;
  • ;
  • 손영규 (공주대학교 건설환경공학부) ;
  • 조혜진 (도로연구실.한국건설기술연구원) ;
  • 김이형 (공주대학교 건설환경공학부)
  • Received : 2011.05.16
  • Accepted : 2011.08.08
  • Published : 2011.08.31

Abstract

Recently, the green spaces in the urban areas were greatly reduced due to urbanization and industrialization. As urban structures such as roads and buildings are built, the amount of impervious area within a watershed increases. High impervious surfaces are the common causes of high runoff volumes as the soil infiltration capacity decreases and the volume and rate of runoff increase thereby decreasing the groundwater recharge. These effects are causing many environmental problems, such as floods and droughts, climate change, heat island phenomenon, drying streams, etc. Most cities attempted to reduce sewer overflows by separating combined sewers, expanding treatment capacity or storage within the sewer system, or by replacing broken or decaying pipes. However, these practices can be enormously expensive than combined sewer overflows. Therefore, in order to improve these practices, alternative methods should be undertaken. A new approach termed as "Low Impact Development (LID)" technology is currently applied in developed countries around the world. The purpose of this study was to effectively manage runoff by adopting the LID techniques. Small Constructed Wetland(Horizontal Subsurface Flow, HSSF) Pilot-scale reactors were made in which monitoring and experiments were performed to investigate the efficiency of the system in removing pollutants from runoff. Based on the results of the Pilot-plant experiments, TSS, $COD_{Cr}$, TN, TP, Total Pb removal efficiency were 95, 82, 35, 91 and 57%, respectively. Most of the pollutants were reduced after passing the settling tank and the vertical filter media. The results of this study can contribute to the conservation of aquatic ecosystems and restoration of natural water cycle in the urban areas.

도시화가 진행될수록 건물의 옥상 및 교통관련 시설물 또한 증가하여, 녹지공간은 감소하고 불투수면은 증가하게 된다. 불투수면이 증가함에 따라, 도시내 자연적 물순환 시스템 파괴, 비점오염물질 증가, 생태축 단절 등과 같은 다양한 환경수리학적 문제점이 발생되고 있다. 최근 들어 국민들의 생활 및 의식수준이 향상되면서, 도시의 경제적인 측면뿐만 아니라 심미적인 측면, 환경적인 측면을 동시에 고려한 지속가능한 도시 개발이 요구되고 있다. 또한 강우유출수 관리에 대한 관심과 인식이 높아지면서 Low Impact Development(LID) 관련 기술의 개발 및 적용에 관한 연구가 활발히 진행되고 있으나, 국내 환경에 적합한 가이드라인, 설계기준 등은 매우 부족한 실정이다. 본 연구는 도시 및 도로가에 적용하기 위한 소규모 인공습지 기술을 개발하기 위하여, Pilot-scale 실험을 실시하였으며, 분석 결과, TSS, $COD_{Cr}$, TN, TP, Total Pb에 대한 평균저감효율이 각각 95%, 82%, 35%, 91%, 57%로 나타났다. 이러한 결과는 소규모 인공습지가 향후 도시 내 효율적인 물순환 시스템을 구축하고, 수생태계 보전에 기여할 수 있을 것으로 판단된다.

Keywords

References

  1. 강현경, 이경재, 녹지축 연결을 통한 생태공간 조성계획, 환경생태학회지, 10(1), pp. 24-38, 1996.
  2. 강성원, 김석구, 김영임, 윤상린, 김소정, 도시지역 불투수면의 오염물질 유출특성 평가, 대한환경 공학회 2005 추계학술연구발표회 논문집, pp. 813-818, 2005.
  3. 김이형, 21세기 친환경 건설을 위한 Low Impact Development(LID) 기술, 물과 미래, 41(6), pp. 47-57, 2008.
  4. 윤춘경, 권순국, 우선호, 권태영, 농촌지역 수질개선을 위한 인공습지실험시설의 3년간 실험결과 검토, 한국물환경학회지, 15(4), pp. 518-589, 1999.
  5. 허재규, 남종현, 김용전, 김인선, 최경숙, 최승익, 안태석, 6년 동안 운영한 인공습지의 처리효율 분석, 한국환경물환경학회, 10(3), pp. 1-7, 2007.
  6. 환경부, 비점오염원관리 업무편람, 2006.
  7. 환경부, 폐기물공정시험방법, 2007.
  8. 환경연구정보시스템, 인공습지를 이용한 자연형 하천정화 기술(2), DICER Techlnfo Part II, 3(12), pp. 589-597, 2004.
  9. Chrisotos S. Akratos, Vassilios A. Tsihrintzis, Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands, Ecological Engineering, 29, pp. 173-191, 2007. https://doi.org/10.1016/j.ecoleng.2006.06.013
  10. Copper, P. F. and A. G. Boon, The use of phragmites for wastwater treatment by the root zone method: The UK approach. In K. R. Reddy and W. H. Smith (eds.), Aquatic Plants for Water Treatment and Resource Recovery, Magnoila Pub. Inc., Orlando, Florida. pp. 153-174, 1987.
  11. F. Zurita, J. De Anda, M.A. Belmont, Treatment of domestic wastwater and production of commercial flowers in vertical and horicontal subsurface-flow constructed wetlands, Ecological Engineering, 35, pp. 816-869, 2009.
  12. J.A. Herrera Melian, A.J. Matrin Rodriguez, J. Arana, O. Gonzalez Diaz, J.J. Gonzalez Henriquez, Hybrid constructed wetlands for wastewater treatment and reuse in the Canary Islands, Ecological Engineering, 36, pp. 891-899, 2010. https://doi.org/10.1016/j.ecoleng.2010.03.009
  13. M.S. Fountoulakis, S. Terzakis, N. Kalogerakis, T. Manios, Removal of polycyclic aromatic hydrocarbons and linear alkylbbenzene sulfonates from domestic wastewater in pilot constructed wetlands and a gravel filter, Ecological Engineering, 35, pp. 1702-1709, 2009. https://doi.org/10.1016/j.ecoleng.2009.06.011
  14. Pant, H. K., Reddy, K. R. and Lemon. E., Phosphrous retention capacity of root bed media of sub-surface flow constructed wetlands, Ecological Engineering, 17, pp. 345-355, 2001. https://doi.org/10.1016/S0925-8574(00)00134-8
  15. Rousseau, D., Vanrolleghem, P., and Pauw, N., Model-based Design of Horizontal Subsurface Flow Constructed Treatment Wetlands : A Review, Water Res., 38(6), pp. 1484-1493, 2004. https://doi.org/10.1016/j.watres.2003.12.013
  16. T.Y. Yeh, C.C. Chou, C.T. Pan, Heavy metal removal within pilot-scale constructed wetlands receiving river water contaminated by confined swine operations, Desalination, 249, pp. 368-373, 2009. https://doi.org/10.1016/j.desal.2008.11.025
  17. U.S. EPA, Low Impact Development (LID); A Literature Review. EPA-841-B-00-005, 2000.