• 제목/요약/키워드: Substrate peak

검색결과 587건 처리시간 0.029초

회전원판접촉법(回轉圓板接觸法)에 의한 폐수처리(廢水處理)의 모형(模型)에 관한 연구(研究) (Models of Wastewater Treatment by Rotating Discs)

  • 정태학;박중현
    • 대한토목학회논문집
    • /
    • 제2권2호
    • /
    • pp.39-46
    • /
    • 1982
  • 회전원판접촉법(回轉圓板接觸法)에 의한 폐수처리(廢水處理)의 이해(理解)를 증진(增進)시키고 여러가지 조건(條件)의 변화(變化)에 따라 달라지는 처리효율(處理效率)을 산정(算定)하기 위하여 모형(模型)을 개발(開發)하고 Simulation을 통하여 정상상태(定常狀態)와 비정상상태(非定常狀態)에서의 모형(模型)을 분석(分析)하였다. 회전원판(回轉圓板)에 의한 기질제거모형(基質除去模型)은 용액(溶液)으로부터 미생물막내부(微生物膜內部)로의 기질전달(基質傳達)과 미생물(微生物)에 의한 기질(基質)의 분해(分解)에 의해 처리(處理)가 이루어진다고 가정(假定)하고 정립(定立)되었고 모형(模型)은 여러개의 요소(要素)로 나뉘어진 액체막(液體膜)과 미생물막(微生物膜), 그리고 용액중(溶液中)의 기질농도(基質濃度)에 관한 일련의 물질수지식(物質收支式)으로 구성(構成)된다. 정상상태(定常狀態)에서 처리효율(處理效率)은 기질(基質)의 확산계수(擴散係數)와 미생물(微生物)의 최대기질분해율(最大基質分解率)에 의해 좌우(左右)되고 확산(擴散)에 의한 영향은 용액중(溶液中)의 기질농도(基質濃度)가 낮고 최대기질분해율(最大基質分解率)이 높을 경우 현저하게 나타난다. 기질제거효율(基質除去效率)은 미생물막(微生物膜)의 두께가 얇을 때는 거의 두께에 비례(比例)하여 증가(增加)하나 두께의 증가(增加)에 따라 효율증가(效率增加)는 둔화(鈍化)되고 한계(限界)두께에 이르면 기질(基質)의 침투(浸透)가 불충분(不充分)하여 효율(效率)은 일정(一定)해진다. 비정상상태(非定常狀態)에서 유출수(流出水)의 수질(水質)은 반응조(反應槽)의 체적(體積)에 의해 영향을 받는다. 반응조(反應槽)의 체적증가(體積增加)는 첨두부하(尖頭負荷)에 대하여 첨두농도(尖頭濃度)를 낮게하는 완충효과(緩衝效果)를 나타내기 때문에 반응조(反應槽)는 균등조(均等槽)의 역할을 한다 할 수 있다.

  • PDF

유도결합 플라즈마 화학기상증착법에 의해 활성화된 탄소원자를 이용한 Ni/SiO2/Si 기판에서 그래핀 성장 (Graphene Formation on Ni/SiO2/Si Substrate Using Carbon Atoms Activated by Inductively-Coupled Plasma Chemical Vapor Deposition)

  • 람반낭;김의태
    • 한국재료학회지
    • /
    • 제23권1호
    • /
    • pp.47-52
    • /
    • 2013
  • Graphene has been synthesized on 100- and 300-nm-thick Ni/$SiO_2$/Si substrates with $CH_4$ gas (1 SCCM) diluted in mixed gases of 10% $H_2$ and 90% Ar (99 SCCM) at $900^{\circ}C$ by using inductively-coupled plasma chemical vapor deposition (ICP-CVD). The film morphology of 100-nm-thick Ni changed to islands on $SiO_2$/Si substrate after heat treatment at $900^{\circ}C$ for 2 min because of grain growth, whereas 300-nm-thick Ni still maintained a film morphology. Interestingly, suspended graphene was formed among Ni islands on 100-nm-thick Ni/$SiO_2$/Si substrate for the very short growth of 1 sec. In addition, the size of the graphene domains was much larger than that of Ni grains of 300-nm-thick Ni/$SiO_2$/Si substrate. These results suggest that graphene growth is strongly governed by the direct formation of graphene on the Ni surface due to reactive carbon radicals highly activated by ICP, rather than to well-known carbon precipitation from carbon-containing Ni. The D peak intensity of the Raman spectrum of graphene on 300-nm-thick Ni/$SiO_2$/Si was negligible, suggesting that high-quality graphene was formed. The 2D to G peak intensity ratio and the full-width at half maximum of the 2D peak were approximately 2.6 and $47cm^{-1}$, respectively. The several-layer graphene showed a low sheet resistance value of $718{\Omega}/sq$ and a high light transmittance of 87% at 550 nm.

Changes in Electrical and Optical Properties and Chemical States of the Amorphous In-Ga-Zn-O Thin Films Depending on Growth Temperature

  • Yoo, Han-Byeol;Thakur, Anup;Kang, Se-Jun;Baik, Jae-Yoon;Lee, Ik-Jae;Park, Jae-Hun;Kim, Ki-Jeong;Kim, Bong-Soo;Shin, Hyun-Joon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.346-346
    • /
    • 2012
  • We investigated electrical and optical properties and chemical states of amorphous In-Ga-Zn-O (a-IGZO) thin films deposited at different substrate temperatures (from room temperature to $300^{\circ}C$). a-IGZO thin films were fabricated by radio frequency magnetron sputtering using $In_2O_3$ : $Ga_2O_3$ : ZnO = 1 : 1 : 1 target, and their electrical and optical properties and chemical states were investigated by Hall-measurement, UV-visible spectroscopy and x-ray photoelectron spectroscopy (XPS), respectively. The data showed that as substrate temperature increased, carrier concentration increased, but mobility, conductivity, transmittance in the shorter wavelength region (>350 nm), and the Tauc-plot-estimated optical bandgap decreased. XPS data indicated that the intensity of In 3d peak compared to Ga 3d peak increased but the intensity of Zn 3d peak compared to Ga 3d decreased, and that, from the deconvoluted O 1s peak, defects or oxygen vacancies and non-quaternary contents increased as the temperature increased. The relative intensity changes of the In, Zn, and O 1s sub-component are suggested to explain the changes in electrical and optical properties.

  • PDF

RF 스퍼터링법에 의한 BN박막 증착시 기판 바이어스전압의 영향에 관한 연구 (The Effect of Substrate Bias Voltage during the Formation of BN film by R. F. Sputtering Method)

  • 이은국;김도훈
    • 한국표면공학회지
    • /
    • 제29권2호
    • /
    • pp.93-99
    • /
    • 1996
  • In this work BN thin films were deposited on Si substrate by R. F. sputtering method at $200^{\circ}C$ and in Ar + $N_2$ mixed gas atmosphere. In order to investigate the effect of ion bombardment on substrate for c-BN bonding, substrate bias voltage was applied. The optimum substrate bias voltage for c-BN bonding was determined by FTIR analysis on specimens which were deposited with various bias voltages. Then BN thin film was deposited with this optimum condition and its phase, morphology, chemical composition, and refractive index were compared with those of BN film which was deposited without bias voltage. FTIR results showed that BN films deposited with substrate bias voltage were composed of mixed phases of c-BN and h-BN, while those deposited without bias voltage were h-BN only. When pure Ar gas was used for sputtering gas, BN films were delaminated easily from substrate in air, while when 10% $N_2$ gas was added to the sputtering gas, although c-BN specific infrared peak was reduced, delamination did not occur. GXRD and TEM results showed that BN films were amorphous phases regardless of substrate bias voltage, and AES results showed that the chemical compositions of B/N were about 1.7~1.8. The refractive index of BN film deposited with bias voltage was higher than that without bias voltage. The reason is believed to be the existence of c-BN bonding in BN film and the higher density of film that deposited with the substrate bias voltage.

  • PDF

펄스레이저 증착법에서 기판-플룸 각 변화가 ZnO 박막의 구조 및 광학적 특성에 미치는 영향 (Structural and Optical Properties of ZnO Thin Films Grown at Various Plume-Substrate Angles by Pulsed Laser Deposition)

  • 강정석;강홍성;김재원;이상렬
    • 한국전기전자재료학회논문지
    • /
    • 제17권3호
    • /
    • pp.329-332
    • /
    • 2004
  • ZnO thin films were grown with different plume-substrate angles by pulsed laser deposition (PLD) to control the amount of ablated species arriving on a substrate per laser shot. The angles between plume propagation direction and substrate plane (P-S angle) were 0$^{\circ}$, 45$^{\circ}$ and 90$^{\circ}$. The growth time was changed in order to adjust film thickness. From the XRD pattern exhibiting a dominant (002) and a minor (101) XRD peak of ZnO, all films were found to be well oriented along c-axis. From the AFM image, it was found that the grain size of ZnO thin film was increased, as P-S angle decreased. UV intensity investigated by PL (Photoluminescence) increased as P-S angle decreased.

Characteristics of ZnO Thin Films Grown on p-type Si and Sapphire Substrate by Pulsed Laser Deposition

  • Lee, K. C.;Lee, Cheon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제3C권6호
    • /
    • pp.241-245
    • /
    • 2003
  • ZnO thin films on (l00) p-type Si and sapphire substrates have been deposited by a pulsed laser deposition technique using an Nd:YAG laser with a wavelength of 266 nm. The influence of the deposition parameters such as oxygen pressure, substrate temperature and laser energy density on the properties of the grown films was studied. The experiments were performed for substrate temperatures in the range of 200∼50$0^{\circ}C$ and oxygen pressure in the range of 100∼700 sccm. All of the films grown in this experiment show strong c-axis orientation with (002) textured ZnO peak. With increasing substrate temperature, the FWHM (full width at half maximum) and surface roughness were decreased. In the case of using sapphire substrate, the intensity of PL spectra increased with increasing ambient oxygen flow rate. We investigated the structural and morphological properties of ZnO thin films using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM).

Pt 코팅된 Si 기판에 제조한 KLN 박막의 구조적 특성 (Structural Properties of KLN Thin Film Deposited on Pt Coated Si Substrate)

  • 박성근;이기직;백민수;전병억;김진수;남기홍
    • 한국전기전자재료학회논문지
    • /
    • 제14권5호
    • /
    • pp.410-416
    • /
    • 2001
  • KLN thin films were fabricated on Pt coated Si(100) wafer using an rf-magnetron sputtering method. The grown KLN thin film consists of 4-fold grains. In this experiment, the structure of 4-fold grained thin film was investigated using XRD and SEM measurements. Pt layer was also deposited using the rf-magnetron sputtering method,. XRD measurement showed that he Pt thin film has Gaussian distribution form with strong (111) direction orientation. The KLN thin film has preferred-orientation of (001) direction, and the peak consists of 2 separate peaks; one with broad FWHM and the other with narrow FWHM. The sharp peak is due to single crystal, and combining with Em results, the 4-fold grain consists of singel crystals with c-axis normal to substrate.

  • PDF

진공증착법에 의해 제조된 PVDF 박막의 전기전도현상과 열자격전류에 관한 연구 (A Study on the electrical condution phenomena and TSC of PVDF thin films fabricated by PVD method)

  • 이선우;박수홍;이덕출
    • 한국진공학회지
    • /
    • 제8권3A호
    • /
    • pp.187-193
    • /
    • 1999
  • In this study, PVDF thin films which show the excellent piezoelectricity and pyroelectricity, are prepared by PVD (physical vapor deposition) method, and thir electrical conduction phenomena for analyses of the electrical conduction mechanism and TSC (Thermally Stimulated Current) for identification of the behavior of conductive carriers are investigated. As a result of FT-IR(Fourier Transform Infrared Spectroscopy) spectra, the crystalline phase transforms $\alpha$ type into $\beta$ type with increasing electric field. From XRD (X-Ray diffraction) analyses patterns, the degree of crystallinity increases from 49.8% to 67%, as the substrate temperature increases from $30^{\circ}C$ to $80^{\circ}C$. As a result of electrical conduction phenomena, the electrical conduction mechanism of PVDF thin films is identified as ionic conduction mechanism. From TSC analyses, there are three peaks as P1, P2, P3 with increasing temperature, and with increasing substrate temperature, the peak temperature of TSC increases and the peak intensity of TSC decreases.

  • PDF

Influence of Surface Morphology and Substrate on Thermal Stability and Desorption Behavior of Octanethiol Self-Assembled Monolayers

  • ;강훈구;;;노재근
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.219-219
    • /
    • 2012
  • The formation and thermal desorption behaviors of octanethiol (OT) SAMs on single crystalline Au (111) and polycrystalline Au, Ag, and Cu substrates were examined by X-ray photoelectron microscopy (XPS), thermal desorption spectroscopy (TDS), and contact angle (CA) measurements. XPS and CA measurements revealed that the adsorption of octanethiol (OT) molecules on these metals led to the formation of chemisorbed self-assembled monolayers (SAMs). Three main desorption fragments for dioctyl disulfide (C8SSC8+, dimer), octanethiolate (C8S+), and octanethiol (C8SH+) were monitored using TDS to understand the effects of surface morphology and the nature of metal substrates on the thermal desorption behavior of alkanethiols. TDS measurements showed that a sharp dimer peak with a very strong intensity on single crystalline Au (111) surface was dominantly observed at 370 K, whereas a broad peak on the polycrystalline Au surface was observed at 405 K. On the other hand, desorption behaviors of octanethiolates and octanethiols were quite similar. We concluded that substrate morphology strongly affects the dimerization process of alkanethiolates on Au surfaces. We also found that desorption intensity of the dimer is in the order of Au>>Ag>Cu, suggesting that the dimerization process occurs efficiently when the sulfur-metal bond has a more covalent character (Au) rather than an ionic character (Ag and Cu).

  • PDF

Board Level Reliability Evaluation for Package on Package

  • 황태경
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2007년도 SMT/PCB 기술세미나
    • /
    • pp.37-47
    • /
    • 2007
  • Factor : Structure Metal pad & SMO size Board level TC test : - Large SMO size better Board level Drop test : - Large SMO size better Factor : Structure Substrate thickness Board level TC test : - Thick substrate better Board level Drop test : - Substrate thickness is not a significant factor for drop test Factor : Material Solder alloy Board level TC test : - Not so big differences over Pb-free solder and NiAu, OSP finish Board level Drop test : - Ni/Au+SAC105, CuOSP+LF35 are better Factor : Material Pad finish Board level TC test : - NiAu/NiAu is best Board livel Drop test : - CuOSP is best Factor : Material Underfill Board level TC test - Several underfills (reworkable) are passed TCG x500 cycles Board level Drop test : - Underfill lots have better performance than non-underfill lots Factor : Process Multiple reflow Board level TC test : - Multiple reflow is not a significant actor for TC test Board level Drop test : N/A Factor : Process Peak temp Board level TC test : - Higher peak temperature is worse than STD Board level Drop test : N/A Factor : Process Stack method Board level TC test : - No big difference between pre-stack and SMT stack Board level Drop test : - Flux dipping is better than paste dipping but failure rate is more faster

  • PDF