• Title/Summary/Keyword: Substrate culture

Search Result 656, Processing Time 0.028 seconds

Transpiration Prediction of Sweet Peppers Hydroponically-grown in Soilless Culture via Artificial Neural Network Using Environmental Factors in Greenhouse (온실의 환경요인을 이용한 인공신경망 기반 수경 재배 파프리카의 증산량 추정)

  • Nam, Du Sung;Lee, Joon Woo;Moon, Tae Won;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.411-417
    • /
    • 2017
  • Environmental and growth factors such as light intensity, vapor pressure deficit, and leaf area index are important variables that can change the transpiration rate of plants. The objective of this study was to compare the transpiration rates estimated by modified Penman-Monteith model and artificial neural network. The transpiration rate of paprika (Capsicum annuum L. cv. Fiesta) was obtained by using the change in substrate weight measured by load cells. Radiation, temperature, relative humidity, and substrate weight were collected every min for 2 months. Since the transpiration rate cannot be accurately estimated with linear equations, a modified Penman-Monteith equation using compensated radiation (Shin et al., 2014) was used. On the other hand, ANN was applied to estimating the transpiration rate. For this purpose, an ANN composed of an input layer using radiation, temperature, relative humidity, leaf area index, and time as input factors and five hidden layers was constructed. The number of perceptons in each hidden layer was 512, which showed the highest accuracy. As a result of validation, $R^2$ values of the modified model and ANN were 0.82 and 0.94, respectively. Therefore, it is concluded that the ANN can estimate the transpiration rate more accurately than the modified model and can be applied to the efficient irrigation strategy in soilless cultures.

Optimal Cultivation Time for Yeast and Lactic Acid Bacteria in Fermented Milk and Effects of Fermented Soybean Meal on Rumen Degradability Using Nylon Bag Technique

  • Polyorach, S.;Poungchompu, O.;Wanapat, M.;Kang, S.;Cherdthong, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.9
    • /
    • pp.1273-1279
    • /
    • 2016
  • The objectives of this study were to determine an optimal cultivation time for populations of yeast and lactic acid bacteria (LAB) co-cultured in fermented milk and effects of soybean meal fermented milk (SBMFM) supplementation on rumen degradability in beef cattle using nylon bag technique. The study on an optimal cultivation time for yeast and LAB growth in fermented milk was determined at 0, 4, 8, 24, 48, 72, and 96 h post-cultivation. After fermenting for 4 days, an optimal cultivation time of yeast and LAB in fermented milk was selected and used for making the SBMFM product to study nylon bag technique. Two ruminal fistulated beef cattle ($410{\pm}10kg$) were used to study on the effect of SBMFM supplementation (0%, 3%, and 5% of total concentrate substrate) on rumen degradability using in situ method at incubation times of 0, 2, 4, 6, 12, 24, 48, and 72 h according to a Completely randomized design. The results revealed that the highest yeast and LAB population culture in fermented milk was found at 72 h-post cultivation. From in situ study, the soluble fractions at time zero (a), potential degradability (a+b) and effective degradability of dry matter (EDDM) linearly (p<0.01) increased with the increasing supplemental levels and the highest was in the 5% SBMFM supplemented group. However, there was no effect of SBMFM supplement on insoluble degradability fractions (b) and rate of degradation (c). In conclusion, the optimal fermented time for fermented milk with yeast and LAB was at 72 h-post cultivation and supplementation of SBMFM at 5% of total concentrate substrate could improve rumen degradability of beef cattle. However, further research on effect of SBMFM on rumen ecology and production performance in meat and milk should be conducted using in vivo both digestion and feeding trials.

Expression of Human SOD1 and Mutant SOD1 (G93A) in E. coli and Identification of SOD1 as a Substrate of HtrA2 Serine Protease (대장균에서의 human SOD1과 mutant SOD1 (G93A) 단백질의 발현과 HtrA2의 기질 여부 확인에 관한 연구)

  • Kim, Goo-Young;Kim, Sang-Soo;Park, Hyo-Jin;Rhim, Hyang-Shuk
    • Journal of Life Science
    • /
    • v.16 no.5
    • /
    • pp.716-722
    • /
    • 2006
  • Superoxide dismutase (SOD) is physiologically important in regulating cellular homeostasis and apoptotic cell death, and its mutations are the cause of familial amyotrophic lateral sclerosis (FALS). Mitochondrial serine protease HtrA2 has a pro-apoptotic function and has known to be associated with neurodegenerative disorders. To investigate the relationship between genes associated with apoptotic cell death, such as HtrA2 and SOD1, we utilized the pGEX expression system to develop a simple and rapid method for purifying wild-type and ALS-associated mutant SOD1 proteins in a suitable form for biochemical studies. We purified SOD1 and SOD1 (G93A) proteins to approximately 90% purity with relatively high yields (3 mg per liter of culture). Consistent with the result in mammalian cells, SOD1 (G93A) was more insoluble than wild-type SOD1 in E. coli, indicating that research on the aggregate formation of SOD1 may be possible using this pGEX expression system in E. coli. We investigated the HtrA2 serine protease activity on SOD1 to assess the relationship between two proteins. Not only wild-type SOD1 but also ALS-associated mutant SOD1 (G93A) were cleaved by HtrA2, resulting in the production of the 19 kDa and 21 kDa fragments that were specific for anti-SOD1 antibody. Using protein gel electrophoresis and immunoblot assay, we compared the relative molecular masses of thrombin-cleaved GST-SOD1 and HtrA2-cleaved SOD1 fragments and can predict that the HtrA2-cleavage sites within SOD1 are the peptide bonds between leucine 9-lysine 10 (L9-K10) and glutamine 23-lysine 24 (Q23-K24). Our study indicates that SOD1 is one of the substrate for HtrA2, suggesting that both HtrA2 and SOD1 may be important for modulating the HtrA2-SOD1-mediated apopotic cell death that is associated with the pathogenesis of neurodegenerative disorder.

Influence of the Substrate and Inhibitors Related to Phosphatidylinositol Metabolism in the Maturation Processes of Porcine Oocytes (돼지 난모세포의 성숙과정에서 Phosphatidylinositol 대사의 기질 및 억제인자의 영향)

  • 강승률;양보석;조인철;이성수;정진관
    • Journal of Embryo Transfer
    • /
    • v.16 no.2
    • /
    • pp.91-98
    • /
    • 2001
  • We evaluated the effects of the substrate and inhibitors related to phosphatidylinositol metabolism on in vitro maturation and fertilization of porcine oocytes. Cumulus-oocyte complexes were cultured in mTLP-PVA medium supplemented with or without inositol (250 mM) fur 46h. Subsequently, these oocytes were inseminated with fresh boar semen in mTALP-PVA medium for 6h. At 6h after insemination, oocytes were cultured for further 12 h in TCM-199 supplemented with 10% FBS (fetal bovine serum). The higher percentage of oocytes in inositol-supplemented medium reached metaphase of the second meiotic division compared to those in control (81.4% vs. 67.3%; P<0.()5). following 18 h of insemination, more number of male pronuclei were formed in the oocytes matured in inositol-supplemented medium than in those of control experiment (42.0% vs. 27.3%; P<0.05). When oocytes were cultured in medium with 10mM LiCl (chloride lithium) or 0.5mM dbcAMP (dibutyryl cyclic adenosine monophosphate) to determine the role of inositol on the maturation of oocytes, these two drugs inhibited the meiotic division of oocytes (P<0.05). However, addition of inositol to the culture medium did overcome the inhibitory effect of these drugs on the oocyte maturation. DbcAMP and verapamil supplemented synergistically arrested the meiotic division of oocytes. Addition of verapamil did not inhibit germinal vesicle breakdown, but it severly inhibited the second meiotic division of oocytes. These results suggest that inositol exert its improving effects on maturation, by activating the PI (phosphatidylinositol) cycle and causing beneficial changes in both cytoplasm and membrane of oocytes.

  • PDF

Domain Expression of ErmSF, MLS (macrolide-lincosamide-streptogramin B) Antibiotic Resistance Factor Protein (MLS (macrolide-lincosamide-streptogramin B) 항생제 내성인자 단백질인 ErmSF의 domain발현)

  • 진형종
    • Korean Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.245-252
    • /
    • 2001
  • Erm proteins, MLS (macrolide-lincosamide-streptogramin B) resistance factor proteins, show high degree of amino acid sequence homology and comprise of a group of structurally homologous N-methyltransferases. On the basis of the recently determined structures of ErmC` and ErmAM, ErmSF was divided into two domains, N-terminal end catalytic domain and C-terminal end substrate binding domain and attempted to overexpress catalytic domain in E. coli using various pET expression systems. Three DNA fragments were used to express the catalytic domain: DNA fragment 1 encoding Met 1 through Glu 186, DNA fragment 2 encoding Arg 60 to Glu 186 and DNA fragment 3 encoding Arg 60 through Arg 240. Among the pET expression vectors used, pET 19b successfully expressed the DNA fragment 3 and pET23b succeeded in expression of DNA fragment 1 and 2. But the overexpressed catalytic domains existed as inclusion body, a insoluble aggregate. To assist the soluble expression of ErmSF catalytic domains, Coexpression of chaperone GroESL or Thioredoxin and lowering the incubation temperature to $22^{\circ}C$ were attempted, as did in the soluble expression of the whole ErmSF protein. Both strategies did not seem to be helpful. Solubilization with guanidine-HCl and renaturation with gradual removal of denaturant and partial digestion of overexpressed whole ErmSF protein (expressed to the level of 126 mg/ι culture as a soluble protein) with proteinase K, nonspecific proteinase are under way.

  • PDF

The Biological Degradation of High Concentration of Trichloroethylene (TCE) by Delftia acidovornas EK2 (Delftia acidovorans EK2에 의한 고농도 Trichloroethylene (TCE)의 생물학적 분해 특성)

  • Park, Woo-Jung;Lee, Sang-Seob
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.183-191
    • /
    • 2010
  • In this study, we isolated 179 bacterial strains using benzene, phenol, ethylbenzene, aniline, cumene, toluene as growth substrate from TCE contaminated soils and wastewaters. All the 179 strains were screened for TCE (30 mg/L) removal (growth substrate 0.2 g/L, $30^{\circ}C$, pH 7, cell biomass 1.0 g/L (w/v)) under aerobic condition for 21 days. EK2 strain using aniline showed the highest removal efficiency (74.4%) for TCE degradation. This strain was identified as Delftia acidovorans as the results of API kit, 16S rDNA sequence and fatty acid assay. In the batch culture, D. acidovorans EK2 showed the bio-degradation for TCE in the various TCE concentration (10 mg/L to 200 mg/L). However, D. acidovorans EK2 did not show the bio-degradation in the TCE 250 mg/L. D. acidovorans EK2 also show the removal efficiency (99.9%) for 12 days in the low concentration (1.0 mg/L). Optimal conditions to degrade TCE 200 mg/L were cell biomass 1.0 g/L (w/v), aniline 0.5 g/L, pH 7 and $30^{\circ}C$. Removal efficiency and removal rate by D. acidovorans EK2 strain was 71.0% and 94.7 nmol/h for 21 days under optimal conditions. Conclusion, we expect that D. acidovorans EK2 may contribute on the biological treatment in the contaminated soil or industrio us wastewater.

Substrate Specificities of ${\alpha}$-Galactosidase from Mortierella sp. (Mortierella sp. 유래 ${\alpha}$-Galactosidase의 기질특이성)

  • Park, Gwi-Gun
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.245-251
    • /
    • 2011
  • [ ${\alpha}$ ]Galactosidase was purified from a culture filtrate of Mortierella sp. by CM-sephadex C-50, and subsequent Sephadex G-100 column chromatography. The final preparation thus obtained showed a single band on SDS-polyacrylamide gel electrophoresis. The molecular weight was determined to be 56 kDa. $Gal^3Man^4$ ($6^3$-mono-O-${\alpha}$-D-galactopyranosyl-4-O-${\beta}$-D-mannotetraose), $Gal^{2,3}Man_5$ ($6^{2,3}$-di-O-${\alpha}$-D-galactopyranosyl-4-O-${\beta}$-D-mannopentaose), $Gal_2Man_3$ ($6^2$-mono-O-${\alpha}$-D-galactopyranosyl-4-O-${\beta}$-D-mannotriose), $Gal^2Man_6$ ($6^2$-mono-O-${\alpha}$-D-galactopyranosyl-4-O-${\beta}$-D-mannohexaose) and $Gal^2Man_5$ ($6^2$-mono-O-${\alpha}$-D-galactopyranosyl-4-O-${\beta}$-D-mannopentaose), prepared from 3 types of microbial ${\beta}$-mannnanase, were used as substrates. $Gal^3Man_4$ and $Gal^2Man_3$ had a stubbed ${\alpha}$-galactosyl residue on the $2^{nd}$ and $3^{rd}$ mannose from the reducing end of mannotetraose and mannotriose, thus ${\alpha}$-galactosidase showed a preference for stubbed ${\alpha}$-galactosyl residue. ${\alpha}$-Galactosidase hydrolyzed $Gal^3Man_4$ more rapidly than $Gal^2Man_3$. However, ${\alpha}$-galactosidase hardly acted on $Gal^{2,3}Man_5$, $Gal^2Man_6$ or $Gal^2Man_5$. The enzyme hydrolyzed melibiose to galactose and glucose, raffinose to galactose and sucrose, and also stachyose to galactose and raffinose.

Effects of Substrates on Fiber Digestion Pattern and Fibrolytic Enzyme Production by Neocallimastix frontalis (기질의 종류가 Neocallimastix frontalis에 의한 섬유소 분해양상과 섬유소 분해 효소 생산에 미치는 영향)

  • Sung, H.G.;Lee, Sung.S.;Ha, J.K.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.763-772
    • /
    • 2004
  • The patterns of fungal growth and fiber digestion under the microscope, and tile productions of fibrolytic enzyme were studied in an in vitro culture with Neocallimastix frontalis SA when either filter paper or rice straw was provided as sole energy source. Under the microscopic observation, active zoospores attachment, sporangium development and complex rhizoidal system were founded on the surface and at the edge of filter paper. After 7 days of incubation, a reduced fiber mass, a decreased fiber cohesion and a weakened fiber structure by fungal digestion were clearly observed. Similar fungal development was observed with rice straw, but fungal growth and digestion took place mostly on the damaged and exposed portion of rice straw. Although there were some differences in absolute concentration and pattern, the concentration of both cellulase and xylanase increased with incubation time with the higher activity being obtained with filter paper. Their differences were large especially after 48 and 96hr of incubation(P< 0.05). The filter paper was more good inducer of cellulolytic and xylanolytic enzymes compared with complex substrate, rice straw. These findings suggest that the filter paper is the better energy source for N frontalis than the complex substrate, and structural disintegration by physical process is able to help rumen fungal growth on the lignified roughage although anaerobic rumen fungi have mechanical and enzymatic functions for fiber digestion.

Suitable substrate formulation for bag cultivation of the cultivar 'Haesal' in Hypsizygus marmoreus (느티만가닥버섯 '햇살' 품종 봉지재배 적합배지 조성 연구)

  • Kim, Min-Keun;Sim, Soon-Ae;Kim, Ah-Young;Kwon, Jin-Hyeuk;Chang, Young-Ho
    • Journal of Mushroom
    • /
    • v.19 no.3
    • /
    • pp.160-165
    • /
    • 2021
  • This study was conducted to investigate a suitable substrate formulation for bag cultivation of Hypsizygus marmoreus. To determine the optimum media composition for H. marmoreus, chemical properties of various media and culture properties were investigated. The fastest primordia formation (9.0 days), the shortest fruiting body harvest period (18.0 days), and the highest yield (144.7 g/bag) were realized with the T6 formulation (55:15:20:5:5 mixing ratio of poplar sawdust, wheat bran, rice bran, dried soybean powder, and palm kernel, respectively). The chemical properties of the T6 formulation were pH, 6.0; total carbon, 19.0%; total nitrogen, 0.83%; C/N ratio, 22.8; P2O5, 0.61%; K2O, 0.46%; and MgO, 0.29%. This is the first attempt using plastic bags for cultivation and will help expand the production of H. marmoreus.

Utilization of Opuntia ficus-indica as a Substrate for the Growth of Mushroom Mycelia and the Functional Properties of its Culture Extracts (버섯균사체 배양기질로서의 손바닥선인장의 활용과 그 배양추출물의 기능적 특성)

  • Moon Sang-Wook;Park Soo-Yeong;Choi Soo-Youn;Hwang Joon-Ho;Jang Mi-Kyoung;Jin Yeong-Jun;Chung Wan-Seok;Kim Se-Jae
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.477-484
    • /
    • 2006
  • This study was performed to know the potentialities of the fruits of Opuntia ficus-indica, as a medium for mushroom mycelial culture. Five mushroom mycelial (Agrocus blazei, Grifola frondosa, Hericium erinaceum, Innonotus obliquus, Phellinus linteus) were frown on the malt extract broth (MEB) and the cactus broth medium (CB). The submerged culture mixtures were extracted using equal volume of ethyl acetate, and their extract yields, total polyphenol contents, and some physiological activities were compared with each other Each extract from mycelial culture grown on CB medium showed remarkable enhancement in physiological activities compared with each counterpart grown on MEB. Among five mycelial cultures grown on CB medium, the extract yield and polyphenyl content were highest in the extract from Grifola frondosa (extract yield, 0.4 g/L and polyphenol content, 22.7%). Also, the extracts from Grifola frondosa showed the highest physiological activities, such as DPPH radical scavenging ($IC_{50}=362.9{\mu}g/ml$), xanthine oxidase inhibition (about 80% at $500{\mu}g/ml$), and superoxide radical scavenging (about 80% at $500{\mu}g/ml$), and NO production inhibition ($IC_{50}=43.1{\mu}g/ml$) in LPS-stimulated RAW 264.7 cells. This result suggests that the fruit of Opuntia ficus-indica can be used as a culture medium for improving the functional properties of various mushroom mycelia.