• Title/Summary/Keyword: Subspace Analysis

Search Result 188, Processing Time 0.023 seconds

An Efficient Matrix-Vector Product Algorithm for the Analysis of General Interconnect Structures (일반적인 연결선 구조의 해석을 위한 효율적인 행렬-벡터 곱 알고리즘)

  • Jung, Seung-Ho;Baek, Jong-Humn;Kim, Joon-Hee;Kim, Seok-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.12
    • /
    • pp.56-65
    • /
    • 2001
  • This paper proposes an algorithm for the capacitance extraction of general 3-dimensional conductors in an ideal uniform dielectric that uses a high-order quadrature approximation method combined with the typical first-order collocation method to enhance the accuracy and adopts an efficient matrix-vector product algorithm for the model-order reduction to achieve efficiency. The proposed method enhances the accuracy using the quadrature method for interconnects containing corners and vias that concentrate the charge density. It also achieves the efficiency by reducing the model order using the fact that large parts of system matrices are of numerically low rank. This technique combines an SVD-based algorithm for the compression of rank-deficient matrices and Gram-Schmidt algorithm of a Krylov-subspace iterative technique for the rapid multiplication of matrices. It is shown through the performance evaluation procedure that the combination of these two techniques leads to a more efficient algorithm than Gaussian elimination or other standard iterative schemes within a given error tolerance.

  • PDF

Modal testing and finite element model calibration of an arch type steel footbridge

  • Bayraktar, Alemdar;Altunisk, Ahmet Can;Sevim, Baris;Turker, Temel
    • Steel and Composite Structures
    • /
    • v.7 no.6
    • /
    • pp.487-502
    • /
    • 2007
  • In recent decades there has been a trend towards improved mechanical characteristics of materials used in footbridge construction. It has enabled engineers to design lighter, slender and more aesthetic structures. As a result of these construction trends, many footbridges have become more susceptible to vibrations when subjected to dynamic loads. In addition to this, some inherit modelling uncertainties related to a lack of information on the as-built structure, such as boundary conditions, material properties, and the effects of non-structural elements make difficult to evaluate modal properties of footbridges, analytically. For these purposes, modal testing of footbridges is used to rectify these problems after construction. This paper describes an arch type steel footbridge, its analytical modelling, modal testing and finite element model calibration. A modern steel footbridge which has arch type structural system and located on the Karadeniz coast road in Trabzon, Turkey is selected as an application. An analytical modal analysis is performed on the developed 3D finite element model of footbridge to provide the analytical frequencies and mode shapes. The field ambient vibration tests on the footbridge deck under natural excitation such as human walking and traffic loads are conducted. The output-only modal parameter identification is carried out by using the peak picking of the average normalized power spectral densities in the frequency domain and stochastic subspace identification in the time domain, and dynamic characteristics such as natural frequencies mode shapes and damping ratios are determined. The finite element model of footbridge is calibrated to minimize the differences between analytically and experimentally estimated modal properties by changing some uncertain modelling parameters such as material properties. At the end of the study, maximum differences in the natural frequencies are reduced from 22% to only %5 and good agreement is found between analytical and experimental dynamic characteristics such as natural frequencies, mode shapes by model calibration.

Solution of Eigenvalue Problems for Nonclassically Damped Systems with Multiple Frequencies (중복근을 갖는 비비례 감쇠시스템의 고유치 해석)

  • 김만철;정형조;오주원;이인원
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.205-216
    • /
    • 1998
  • A solution method is presented to solve the eigenvalue problem arising in the dynamic analysis of nonclassicary damped structural systems with multiple eigenvalues. The proposed method is obtained by applying the modified Newton-Raphson technique and the orthonormal condition of the eigenvectors to the linear eigenproblem through matrix augmentation of the quadratic eigenvalue problem. In the iteration methods such as the inverse iteration method and the subspace iteration method, singularity may be occurred during the factorizing process when the shift value is close to an eigenvalue of the system. However, even though the shift value is an eigenvalue of the system, the proposed method provides nonsingularity, and that is analytically proved. Since the modified Newton-Raphson technique is adopted to the proposed method, initial values are need. Because the Lanczos method effectively produces better initial values than other methods, the results of the Lanczos method are taken as the initial values of the proposed method. Two numerical examples are presented to demonstrate the effectiveness of the proposed method and the results are compared with those of the well-known subspace iteration method and the Lanczos method.

  • PDF

Genetic Design of Granular-oriented Radial Basis Function Neural Network Based on Information Proximity (정보 유사성 기반 입자화 중심 RBF NN의 진화론적 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.436-444
    • /
    • 2010
  • In this study, we introduce and discuss a concept of a granular-oriented radial basis function neural networks (GRBF NNs). In contrast to the typical architectures encountered in radial basis function neural networks(RBF NNs), our main objective is to develop a design strategy of GRBF NNs as follows : (a) The architecture of the network is fully reflective of the structure encountered in the training data which are granulated with the aid of clustering techniques. More specifically, the output space is granulated with use of K-Means clustering while the information granules in the multidimensional input space are formed by using a so-called context-based Fuzzy C-Means which takes into account the structure being already formed in the output space, (b) The innovative development facet of the network involves a dynamic reduction of dimensionality of the input space in which the information granules are formed in the subspace of the overall input space which is formed by selecting a suitable subset of input variables so that the this subspace retains the structure of the entire space. As this search is of combinatorial character, we use the technique of genetic optimization to determine the optimal input subspaces. A series of numeric studies exploiting some nonlinear process data and a dataset coming from the machine learning repository provide a detailed insight into the nature of the algorithm and its parameters as well as offer some comparative analysis.

Non-Robust and Robust Regularized Zero-Forcing Interference Alignment Methods for Two-Cell MIMO Interfering Broadcast (두 셀 다중 안테나 하향링크 간섭 채널에서 비강인한/강인한 정칙화된 제로포싱 간섭 정렬 방법)

  • Shin, Joonwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.7
    • /
    • pp.560-570
    • /
    • 2013
  • In this paper, we propose transceiver design strategies for the two-cell multiple-input multiple-output (MIMO) interfering broadcast channel where inter-cell interference (ICI) exists in addition to inter-user interference (IUI). We first formulate the generalized zero-forcing interference alignment (ZF-IA) method based on the alignment of IUI and ICI in multi-dimensional subspace. We then devise a minimum weighted-mean-square-error (WMSE) method based on "regularizing" the precoders and decoders of the generalized ZF-IA scheme. In contrast to the existing weighted-sum-rate-maximizing transceiver, our method does not require an iterative calculation of the optimal weights. Because of this, the proposed scheme, while not designed specially to maximize the sum-rate, is computationally efficient and achieves a faster convergence compared to the known weighed-sum-rate maximizing scheme. Through analysis and simulation, we show the effectiveness of the proposed regularized ZF-IA scheme.

Matched Field Source Localization and Interference Suppression Using Mode Space Estimation (정합장 기반 표적 위치추정 시 모드공간 분석을 통한 간섭 신호 제거 기법)

  • Kim, Kyung-Seop;Seong, Woo-Jae;Pyo, Sang-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.40-46
    • /
    • 2008
  • Weak target detection and localization in the presence of loud surface ship noise is a critical problem for matched field processing (MFP) in shallow water. For stationary sources, each signal component of received signal can be separated and interference can be suppressed using eigen space analysis schemes. However, source motion, in realistic cases, causes spreading of signal energies in their subspace. In this case, eigenvalues of target and interfere signal components are mixed and hard to be separated with usual phone space eigenvector decomposition (EVD) approaches. Our technique is based on mode space and utilizes the difference in their physical characteristics of surface and submerged sources. Performing EVD for modal cross spectral density matrix, interference components in the mode amplitude subspace can be classified and eliminated. This technique is demonstrated with synthetic data, and results are discussed.

Free vibration analysis of stiffened laminated plates using layered finite element method

  • Guo, Meiwen;Harik, Issam E.;Ren, Wei-Xin
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.245-262
    • /
    • 2002
  • The free vibration analysis of stiffened laminated composite plates has been performed using the layered (zigzag) finite element method based on the first order shear deformation theory. The layers of the laminated plate is modeled using nine-node isoparametric degenerated flat shell element. The stiffeners are modeled as three-node isoparametric beam elements based on Timoshenko beam theory. Bilinear in-plane displacement constraints are used to maintain the inter-layer continuity. A special lumping technique is used in deriving the lumped mass matrices. The natural frequencies are extracted using the subspace iteration method. Numerical results are presented for unstiffened laminated plates, stiffened isotropic plates, stiffened symmetric angle-ply laminates, stiffened skew-symmetric angle-ply laminates and stiffened skew-symmetric cross-ply laminates. The effects of fiber orientations (ply angles), number of layers, stiffener depths and degrees of orthotropy are examined.

A study on scanner calibration method using nonlinear regression analysis in sub-divided color space (분할된 색공간에서 비선형 다중회귀분석법을 이용한 스캐너 켈리브레이션에 관한 연구)

  • 김나나;구철회
    • Proceedings of the Korean Printing Society Conference
    • /
    • 2000.12a
    • /
    • pp.0.2-0
    • /
    • 2000
  • Most important step for the color matching in scanner is the color coordinate transformation from the scanner RGB space to device independent uniform color space. A variety of color calibration technologies have been developed for input device. Linear or nonlinear matrices have been conveniently applied to correct the color filter\`s mismatch with color matching function in scanners. The color matching accuracy is expected to be further improved when the nonlinear matrices are optimized into subdivided smaller color spaces than in single matrix of the entire color space. This article proposed the scanner calibration method using subspace division regression analysis and it were compared with conventional method.

  • PDF

Hybrid evolutionary identification of output-error state-space models

  • Dertimanis, Vasilis K.;Chatzi, Eleni N.;Spiridonakos, Minas D.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.4
    • /
    • pp.427-449
    • /
    • 2014
  • A hybrid optimization method for the identification of state-space models is presented in this study. Hybridization is succeeded by combining the advantages of deterministic and stochastic algorithms in a superior scheme that promises faster convergence rate and reliability in the search for the global optimum. The proposed hybrid algorithm is developed by replacing the original stochastic mutation operator of Evolution Strategies (ES) by the Levenberg-Marquardt (LM) quasi-Newton algorithm. This substitution results in a scheme where the entire population cloud is involved in the search for the global optimum, while single individuals are involved in the local search, undertaken by the LM method. The novel hybrid identification framework is assessed through the Monte Carlo analysis of a simulated system and an experimental case study on a shear frame structure. Comparisons to subspace identification, as well as to conventional, self-adaptive ES provide significant indication of superior performance.

Matched Field Processing: Ocean Experimental Data Analysis Using Feature Extraction Method (실 해상 실험 데이터를 이용한 정합장 처리에서의 특성치 추출 기법 분석)

  • Kim Kyung Seop;Seong Woo Jae;Song Hee Chun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1E
    • /
    • pp.21-27
    • /
    • 2005
  • Environmental mismatch has been one of important issues discussed in matched field processing for underwater source detection problem. To overcome this mismatch many algorithms professing robustness have been suggested. Feature extraction method (FEM) [Seong and Byun, IEEE Journal of Oceanic Engineering, 27(3), 642-652 (2002)] is one of robust matched field processing algorithms, which is based on the eigenvector estimation. Excluding eigenvectors of replica covariance matrix corresponding to large eigenvalues and forming an incoherent subspace of the replica field, the processor is formulated similarly to MUSIC algorithm. In this paper, by using the ocean experimental data, processing results of FEM and MVDR with white noise constraint (WNC) are presented for two levels of multi-tone source. Analysis of eigen-space of CSDM and FEM performance are also presented.