DOI QR코드

DOI QR Code

Hybrid evolutionary identification of output-error state-space models

  • Dertimanis, Vasilis K. (Institute of Structural Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich) ;
  • Chatzi, Eleni N. (Institute of Structural Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich) ;
  • Spiridonakos, Minas D. (Institute of Structural Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich)
  • Received : 2014.10.17
  • Accepted : 2014.12.08
  • Published : 2014.12.25

Abstract

A hybrid optimization method for the identification of state-space models is presented in this study. Hybridization is succeeded by combining the advantages of deterministic and stochastic algorithms in a superior scheme that promises faster convergence rate and reliability in the search for the global optimum. The proposed hybrid algorithm is developed by replacing the original stochastic mutation operator of Evolution Strategies (ES) by the Levenberg-Marquardt (LM) quasi-Newton algorithm. This substitution results in a scheme where the entire population cloud is involved in the search for the global optimum, while single individuals are involved in the local search, undertaken by the LM method. The novel hybrid identification framework is assessed through the Monte Carlo analysis of a simulated system and an experimental case study on a shear frame structure. Comparisons to subspace identification, as well as to conventional, self-adaptive ES provide significant indication of superior performance.

Keywords

References

  1. Back, T. (1996), Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms, Oxford University Press.
  2. Bergboer, N.H., Verdult, V. and Verhaegen, M.H.G. (2002), "An efficient implementation of maximum likelihood identification of LTI state-space models by local gradient search", Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA.
  3. Beyer, H.G. and Schwefel, H.P. (2002), "Evolution strategies - A comprehensive introduction", Natural Comput., 1(1), 3-52. https://doi.org/10.1023/A:1015059928466
  4. Casciati, S. (2008), "Stiffness identification and damage localization via differential evolution algorithms", Struct. Control Health Monit., 15(3), 436-449. https://doi.org/10.1002/stc.236
  5. Catbas, F.N., Kijewski-Correa, T. and Aktan, A.E. (Eds.) (2013), Structural Identification of Constructed Systems: Approaches, Methods, and Technologies for Effective Practice of St-Id, ASCE, Reston, USA.
  6. Dahlen, A., Lindquist, A. and Mari, J. (1998), "Experimental evidence showing that stochastic subspace identification methods may fail", Syst. Control Lett., 34(5), 303-312. https://doi.org/10.1016/S0167-6911(98)00020-6
  7. Dennis, J.E. and Schnabel, R.B. (1981), Numerical Methods for Unconstrained Optimization and Nonlinear Equations, SIAM, Philadelphia, USA.
  8. Dertimanis, V.K. (2014), "Output-error state-space identification of vibrating structures using evolution strategies: a benchmark study," Smart Struct. Syst., 14(1), 17-37. https://doi.org/10.12989/sss.2014.14.1.017
  9. Dertimanis, V.K. (2013), "On the use of dispersion analysis for model assessment in structural identification", J. Vib. Control, 19(15), 2270-2284. https://doi.org/10.1177/1077546313501536
  10. Dertimanis, V.K. and Chatzi, E.N. (2014a), "A hybrid evolution strategy approach to the structural identification problem via state-space models", Proceedings of the 7th European Workshop on Structural Health Monitoring, Barcelona, Spain, July.
  11. Dertimanis, V.K., and Chatzi, E.N. (2014b), "Dispersion-corrected stabilization diagrams for model order assessment in structural identification", Proceedings of the 6th World Conference on Structural Control and Monitoring, Nantes, France, July.
  12. Dertimanis, V., Koulocheris, D., Vrazopoulos, H. and Kanarachos, A. (2003), "Time-series parametric modeling using evolution strategy with deterministic mutation operators", Proceedings of the IFAC International Conference on Intelligent Control Systems and Signal Processing, Faro, Portugal, April.
  13. Dimou, C.K. and Koumousis, V.K. (2003), "Competitive genetic algorithms with application to reliability optimal design", Adv. Eng. Softw., 34(11), 773-785. https://doi.org/10.1016/S0965-9978(03)00101-7
  14. Fleming, P. and Purshouse, R. (2002), "Evolutionary algorithms in control systems engineering: a survey", Control Eng. Pract., 10(11), 1223-1241. https://doi.org/10.1016/S0967-0661(02)00081-3
  15. Fletcher, R. (2000), Practical Methods of Optimization, (2nd Ed.), John Wiley & Sons Ltd., New York, USA.
  16. Friswell, M. (2007), "Damage identification using inverse methods", Philos. T. Roy. Soc. A., 365(1851), 393-410. https://doi.org/10.1098/rsta.2006.1930
  17. Fritzen, C.P., Klinkov, M. and Kraemer, P. (2013), "Vibration-based damage diagnosis and monitoring of external loads", (Eds., Ostachowicz, W. and Guemes, J.A.), New Trends in Structural Health Monitoring, Springer, Vienna, Austria.
  18. Gibson, S. and Ninness, B. (2005), "Robust maximum-likelihood estimation of multivariable dynamic systems", Automatica, 41(10), 1667-1682. https://doi.org/10.1016/j.automatica.2005.05.008
  19. Huang, J.N. and Pappa, R.S. (1985), "An Eigensystem Realization Algorithm (ERA) for modal parameter identification and model reduction", J. Guid. Control Dynam., 8, 620-627. https://doi.org/10.2514/3.20031
  20. Katayama, T. (2005), Subspace Methods for System Identification, Springer-Verlag, Berlin, Germany.
  21. Kim, J. and Lynch, J.P. (2012), "Subspace system identification of support-excited structures-part I: theory and black-box system identification", Earthq. Eng. Struct. D., 41(15), 2235-2251.
  22. Koulocheris, D., Dertimanis, V. and Spentzas, C. (2008), "Parametric identification of vehicle structural characteristics", Forschung im Ingenieurwesen, 72(1), 39-51. https://doi.org/10.1007/s10010-008-0066-z
  23. Koulocheris, D., Vrazopoulos, H. and Dertimanis, V. (2003), "Vehicle suspension system identification using evolutionary algorithms", Proceedings of the EUROGEN, Barcelona, Spain, July.
  24. Kristinsson, K. and Dumont, G. (1992), "System identification and control using genetic algorithms", IEEE T. Syst. Man. Cybernetics, 22(5), 1033-1046. https://doi.org/10.1109/21.179842
  25. Lau, J., Lanslots, J., Peeters, B. and Van der Auweraer, H. (2007), "Automatic modal analysis: reality or myth?", Proceedings of the 25th International Modal Analysis Conference, IMAC-XXV, Orlando, USA.
  26. Lin, J.W. and Betti, R. (2004), "On-line identification and damage detection in non-linear structural systems using a variable forgetting factor approach", Earthq. Eng. Struct. D., 33(4), 419-444. https://doi.org/10.1002/eqe.350
  27. Ljung, L. (1999), System Identification: Theory for the User, (2nd Ed.), Prentice-Hall Inc., Englewood Cliffs, NJ, USA.
  28. McKelvey, T., Helmersson, A. and Ribarits, T. (2004), "Data driven local coordinates for multivariable linear systems and their application to system identification", Automatica, 40(9), 1629-1635. https://doi.org/10.1016/j.automatica.2004.04.015
  29. Mc Kelvey, T. and Helmersson, A. (1997), "System identification using an over-parameterized model class-improving the optimization algorithm", Proceedings of the 36th IEEE Conference on Decision and Control, San Diego, CA.
  30. More, J.J. (1978), "The Levenberg-Marquardt algorithm: implementation and theory", (Ed. Watson, G.A.), Lecture Notes in Mathematics 630, Springer, Berlin, Germany.
  31. Nagarajaiah, S. and Basu, B. (2009), "Output only modal identification and structural damage detection using time frequency & wavelet techniques", Earthq. Eng. Eng. Vib., 8(4), 583-605. https://doi.org/10.1007/s11803-009-9120-6
  32. Papadimitriou, C., De Roeck, G. and Lombaert, G. (2012). "Predictions of fatigue damage accumulation in the entire body of metallic bridges by analysing operational vibrations", Proceedings of the 3rd International Symposium on Life-Cycle Civil Engineering, Vienna, Austria.
  33. Reynders, E. (2012), "System identification methods for (operational) modal analysis: review and comparison", Earthq. Eng. Struct. D., 19(1), 51-124.
  34. Schwefel, H.P. (1995), Evolution and Optimum Seeking, Wiley, New York, NY.
  35. Tang, H.S., Xue S.T. and Fan. C. (2008), "Differential evolution strategy for structural system identification", Comput. Struct., 86(21-22), 2004-2012. https://doi.org/10.1016/j.compstruc.2008.05.001
  36. Verhaegen, M. and Verdult, V. (2007), Filtering and System Identification: a Least Squares Approach, Cambridge University Press, Cambridge, UK.
  37. Wu, T. and Kareem, A. (2013), "Aerodynamics and aeroelasticity of cable-supported bridges: identification of nonlinear features", J. Eng. Mech. - ASCE, 139(12), 1886-1893. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000615
  38. Yu, X. and Gen, M. (2010), Introduction to Evolutionary Algorithms, Springer-Verlag, London, UK.