• Title/Summary/Keyword: Subset R

Search Result 261, Processing Time 0.03 seconds

FUZZY SUBRINGS OF FUNDAMENTAL RINGS

  • Davvaz, B.
    • The Pure and Applied Mathematics
    • /
    • v.11 no.2
    • /
    • pp.127-132
    • /
    • 2004
  • $H_v$-rings first were introduced by Vougiouklis in 1990. The largest class of algebraic systems satisfying ring-like axioms is the $H_v$-ring. Let R be an $H_v$-ring and ${\gamma}_R$ the smallest equivalence relation on R such that the quotient $R/{\gamma}_R$, the set of all equivalence classes, is a ring. In this case $R/{\gamma}_R$ is called the fundamental ring. In this short communication, we study the fundamental rings with respect to the product of two fuzzy subsets.

  • PDF

STRONG UNIQUE CONTINUATION OF THE SCHR$\"{O}$DINGER OPERATOR

  • Kim, Yonne-Mi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.55-60
    • /
    • 1994
  • It is well known that if P(x,D) is an elliptic differential operator, with real analytic coefficients, and P(x,D)u = 0 in an open, connected subset .ohm..mem.R$^{n}$ , then u is real analytic in .ohm. Hence, if there exists x$_{0}$ .mem..ohm. such that u vanishes of .inf. order at x$_{0}$ , u must be identically 0. If a differential operator P(x, D) has the above property, we say that p(x,D) has the strong unique continuation property (s.u.c.p.). If, on the other hand, P(x,D)u = 0 in .ohm., and u = 0 in .ohm.', an open subset of .ohm., implies that u = 0 in .ohm. we say that P(x,D)u = 0 in .ohm., and suppu .contnd. K .contnd. .ohm implies that u = 0 in .ohm. we sat that P(x,D) has the weak unique continuation property (m.u.c.p.).

  • PDF

EXISTENCE RESULT FOR HEAT-CONDUCTING VISCOUS INCOMPRESSIBLE FLUIDS WITH VACUUM

  • Cho, Yong-Geun;Kim, Hyun-Seok
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.645-681
    • /
    • 2008
  • The Navier-Stokes system for heat-conducting incompressible fluids is studied in a domain ${\Omega}{\subset}R^3$. The viscosity, heat conduction coefficients and specific heat at constant volume are allowed to depend smoothly on density and temperature. We prove local existence of the unique strong solution, provided the initial data satisfy a natural compatibility condition. For the strong regularity, we do not assume the positivity of initial density; it may vanish in an open subset (vacuum) of ${\Omega}$ or decay at infinity when ${\Omega}$ is unbounded.

SOME PROPERTIES OF CERTAIN CLASSES OF FUNCTIONS WITH BOUNDED RADIUS ROTATIONS

  • NOOR, KHALIDA INAYAT
    • Honam Mathematical Journal
    • /
    • v.19 no.1
    • /
    • pp.97-105
    • /
    • 1997
  • Let $R_k({\alpha})$, $0{\leq}{\alpha}<1$, $k{\geq}2$ denote certain subclasses of analytic functions in the unit disc E with bounded radius rotation. A function f, analytic in E and given by $f(z)=z+{\sum_{m=2}^{\infty}}a_m{z^m}$, is said to be in the family $R_k(n,{\alpha})n{\in}N_o=\{0,1,2,{\cdots}\}$ and * denotes the Hadamard product. The classes $R_k(n,{\alpha})$ are investigated and same properties are given. It is shown that $R_k(n+1,{\alpha}){\subset}R_k(n,{\alpha})$ for each n. Some integral operators defined on $R_k(n,{\alpha})$ are also studied.

  • PDF

ON LEFT α-MULTIPLIERS AND COMMUTATIVITY OF SEMIPRIME RINGS

  • Ali, Shakir;Huang, Shuliang
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.69-76
    • /
    • 2012
  • Let R be a ring, and ${\alpha}$ be an endomorphism of R. An additive mapping H : R ${\rightarrow}$ R is called a left ${\alpha}$-multiplier (centralizer) if H(xy) = H(x)${\alpha}$(y) holds for all x,y $\in$ R. In this paper, we shall investigate the commutativity of prime and semiprime rings admitting left ${\alpha}$-multiplier satisfying any one of the properties: (i) H([x,y])-[x,y] = 0, (ii) H([x,y])+[x,y] = 0, (iii) $H(x{\circ}y)-x{\circ}y=0$, (iv) $H(x{\circ}y)+x{\circ}y=0$, (v) H(xy) = xy, (vi) H(xy) = yx, (vii) $H(x^2)=x^2$, (viii) $H(x^2)=-x^2$ for all x, y in some appropriate subset of R.

Interval-Valued Fuzzy Congruences on a Semigroup

  • Lee, Jeong Gon;Hur, Kul;Lim, Pyung Ki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.231-244
    • /
    • 2013
  • We introduce the concept of interval-valued fuzzy congruences on a semigroup S and we obtain some important results: First, for any interval-valued fuzzy congruence $R_e$ on a group G, the interval-valued congruence class Re is an interval-valued fuzzy normal subgroup of G. Second, for any interval-valued fuzzy congruence R on a groupoid S, we show that a binary operation * an S=R is well-defined and also we obtain some results related to additional conditions for S. Also we improve that for any two interval-valued fuzzy congruences R and Q on a semigroup S such that $R{\subset}Q$, there exists a unique semigroup homomorphism g : S/R${\rightarrow}$S/G.

PACKING MEASURE AND DIMENSION OF LOOSELY SELF-SIMILAR SETS

  • TAE HEE KIM;MI RYEONG LEE;SANG HUN LEE;HUNG HWAN LEE
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.4
    • /
    • pp.781-789
    • /
    • 1998
  • Let K be a loosely self-similar set. Then a-dimensional packing measure of K is the same as that of a Borel subset K( $r_1^{\alpha}$ㆍㆍㆍ$r_{m}$ $^{\alpha}$/) of K. And packing dimension of K is equal to that of K\K( $r_1^{\alpha}$ㆍㆍㆍ $r_{m}$ $^{\alpha}$/) and K( $r_1^{\alpha}$ㆍㆍㆍ $r_{m}$ $^{\alpha}$/).X> $^{\alpha}$/)).

  • PDF

ON WEAKLY S-PRIME SUBMODULES

  • Hani A., Khashan;Ece Yetkin, Celikel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1387-1408
    • /
    • 2022
  • Let R be a commutative ring with a non-zero identity, S be a multiplicatively closed subset of R and M be a unital R-module. In this paper, we define a submodule N of M with (N :R M)∩S = ∅ to be weakly S-prime if there exists s ∈ S such that whenever a ∈ R and m ∈ M with 0 ≠ am ∈ N, then either sa ∈ (N :R M) or sm ∈ N. Many properties, examples and characterizations of weakly S-prime submodules are introduced, especially in multiplication modules. Moreover, we investigate the behavior of this structure under module homomorphisms, localizations, quotient modules, cartesian product and idealizations. Finally, we define two kinds of submodules of the amalgamation module along an ideal and investigate conditions under which they are weakly S-prime.

NONNIL-S-COHERENT RINGS

  • Najib Mahdou;El Houssaine Oubouhou
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.45-58
    • /
    • 2024
  • Let R be a commutative ring with identity. If the nilpotent radical N il(R) of R is a divided prime ideal, then R is called a ϕ-ring. Let R be a ϕ-ring and S be a multiplicative subset of R. In this paper, we introduce and study the class of nonnil-S-coherent rings, i.e., the rings in which all finitely generated nonnil ideals are S-finitely presented. Also, we define the concept of ϕ-S-coherent rings. Among other results, we investigate the S-version of Chase's result and Chase Theorem characterization of nonnil-coherent rings. We next study the possible transfer of the nonnil-S-coherent ring property in the amalgamated algebra along an ideal and the trivial ring extension.

THE STRUCTURE OF SEMIPERFECT RINGS

  • Han, Jun-Cheol
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.425-433
    • /
    • 2008
  • Let R be a ring with identity $1_R$ and let U(R) denote the group of all units of R. A ring R is called locally finite if every finite subset in it generates a finite semi group multiplicatively. In this paper, some results are obtained as follows: (1) for any semilocal (hence semiperfect) ring R, U(R) is a finite (resp. locally finite) group if and only if R is a finite (resp. locally finite) ring; U(R) is a locally finite group if and only if U$(M_n(R))$ is a locally finite group where $M_n(R)$ is the full matrix ring of $n{\times}n$ matrices over R for any positive integer n; in addition, if $2=1_R+1_R$ is a unit in R, then U(R) is an abelian group if and only if R is a commutative ring; (2) for any semiperfect ring R, if E(R), the set of all idempotents in R, is commuting, then $R/J\cong\oplus_{i=1}^mD_i$ where each $D_i$ is a division ring for some positive integer m and |E(R)|=$2^m$; in addition, if 2=$1_R+1_R$ is a unit in R, then every idempotent is central.