DOI QR코드

DOI QR Code

EXISTENCE RESULT FOR HEAT-CONDUCTING VISCOUS INCOMPRESSIBLE FLUIDS WITH VACUUM

  • Cho, Yong-Geun (Department of Mathematics, and Institute of Pure and Applied Mathematics Chonbuk National University) ;
  • Kim, Hyun-Seok (Department of Mathematics Sogang University)
  • Published : 2008.05.31

Abstract

The Navier-Stokes system for heat-conducting incompressible fluids is studied in a domain ${\Omega}{\subset}R^3$. The viscosity, heat conduction coefficients and specific heat at constant volume are allowed to depend smoothly on density and temperature. We prove local existence of the unique strong solution, provided the initial data satisfy a natural compatibility condition. For the strong regularity, we do not assume the positivity of initial density; it may vanish in an open subset (vacuum) of ${\Omega}$ or decay at infinity when ${\Omega}$ is unbounded.

Keywords

References

  1. R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65. Academic Press, New York-London, 1975
  2. H. Amann, Heat-conducting incompressible viscous fluids, Navier-Stokes equations and related nonlinear problems (Funchal, 1994), 231-243, Plenum, New York, 1995
  3. M. E. Bogovskii, Solution of the first boundary value problem for an equation of continuity of an incompressible medium, Dokl. Akad. Nauk SSSR 248 (1979), no. 5, 1037-1040
  4. J. L. Boldrini, M. A. Rojas-Medar, and E. Fern'andez-Cara, Semi-Galerkin approximation and strong solutions to the equations of the nonhomogeneous asymmetric fluids, J. Math. Pures Appl. (9) 82 (2003), no. 11, 1499-1525 https://doi.org/10.1016/j.matpur.2003.09.005
  5. Y. Cho, H. J. Choe, and H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids, J. Math. Pures Appl. (9) 83 (2004), no. 2, 243-275 https://doi.org/10.1016/j.matpur.2003.11.004
  6. Y. Cho and H. Kim, Unique solvability for the density-dependent Navier-Stokes equations, Nonlinear Anal. 59 (2004), no. 4, 465-489 https://doi.org/10.1016/j.na.2004.07.020
  7. Y. Cho and H. Kim, Existence results for viscous polytropic fluids with vacuum, J. Differential Equations 228 (2006), no. 2, 377-411 https://doi.org/10.1016/j.jde.2006.05.001
  8. H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations 28 (2003), no. 5-6, 1183-1201 https://doi.org/10.1081/PDE-120021191
  9. E. Fern'andez Cara and F. Guillen, The existence of nonhomogeneous, viscous and incompressible flow in unbounded domains, Comm. Partial Differential Equations 17 (1992), no. 7-8, 1253-1265
  10. G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I., Linearized steady problems. Springer Tracts in Natural Philosophy, 38. Springer-Verlag, New York, 1994
  11. M. Giaquinta and G. Modica, Nonlinear systems of the type of the stationary Navier-Stokes system, J. Reine Angew. Math. 330 (1982), 173-214
  12. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Second edition. Grundlehren der Mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences, 224. Springer-Verlag, Berlin, 1983
  13. J. G. Heywood, The Navier-Stokes equations: on the existence, regularity and decay of solutions, Indiana Univ. Math. J. 29 (1980), no. 5, 639-681 https://doi.org/10.1512/iumj.1980.29.29048
  14. S. Itoh and A. Tani, Solvability of nonstationary problems for nonhomogeneous incompressible fluids and the convergence with vanishing viscosity, Tokyo J. Math. 22 (1999), no. 1, 17-42 https://doi.org/10.3836/tjm/1270041610
  15. J. U. Kim, Weak solutions of an initial-boundary value problem for an incompressible viscous fluid with nonnegative density, SIAM J. Math. Anal. 18 (1987), no. 1, 89-96 https://doi.org/10.1137/0518007
  16. H. Kozono and T. Ogawa, Some Lp estimate for the exterior Stokes flow and an application to the nonstationary Navier-Stokes equations, Indiana Univ. Math. J. 41 (1992), no. 3, 789-808 https://doi.org/10.1512/iumj.1992.41.41041
  17. H. Kozono and H. Sohr, New a priori estimates for the Stokes equations in exterior domains, Indiana Univ. Math. J. 40 (1991), no. 1, 1-27 https://doi.org/10.1512/iumj.1991.40.40001
  18. O. Ladyzhenskaya and V. A. Solonnikov, The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids, Boundary value problems of mathematical physics, and related questions of the theory of functions, 8. Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 52 (1975), 52-109, 218-219
  19. P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1., Incompressible models. Oxford Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1996
  20. H. Okamoto, On the equation of nonstationary stratified fluid motion: uniqueness and existence of the solutions, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1984), no. 3, 615-643
  21. M. Padula, On the existence and uniqueness of nonhomogeneous motions in exterior domains, Math. Z. 203 (1990), no. 4, 581-604 https://doi.org/10.1007/BF02570758
  22. R. Salvi, The equations of viscous incompressible nonhomogeneous fluids: on the existence and regularity, J. Austral. Math. Soc. Ser. B 33 (1991), no. 1, 94-110 https://doi.org/10.1017/S0334270000008651
  23. J. Simon, Ecoulement d'um fluide non homogene avec une densite initiale s'annulant, C. R. Acad. Sci. Paris Ser. A-B 287 (1978), no. 15, A1009-A1012
  24. J. Simon, Compact sets in the space $L^p$(0; T;B), Ann. Mat. Pura Appl. (4) 146 (1987), 65-96 https://doi.org/10.1007/BF01762360
  25. J. Simon, Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure, SIAM J. Math. Anal. 21 (1990), no. 5, 1093-1117 https://doi.org/10.1137/0521061
  26. V. A. Solonnikov, Solvability of the initial boundary value problem for the equation of a viscous compressible fluid, J. Sov. Math. 14 (1980), 1120-1133 https://doi.org/10.1007/BF01562053
  27. R. Temam, Navier-Stokes Equations, Theory and numerical analysis. With an appendix by F. Thomasset. Third edition. Studies in Mathematics and its Applications, 2. North-Holland Publishing Co., Amsterdam, 1984

Cited by

  1. Global well-posedness of the non-isothermal model for incompressible nematic liquid crystals vol.2017, pp.1, 2017, https://doi.org/10.1186/s13661-017-0844-3
  2. The global wellposedness of the 3D heat-conducting viscous incompressible fluids with bounded density vol.22, 2015, https://doi.org/10.1016/j.nonrwa.2014.08.001
  3. Local existence of unique strong solution to non-isothermal model for incompressible nematic liquid crystals in 3D vol.290, 2016, https://doi.org/10.1016/j.amc.2016.06.038
  4. Blow-up of viscous compressible reactive self-gravitating gas vol.28, pp.2, 2012, https://doi.org/10.1007/s10255-012-0152-8
  5. Regularity of 1D compressible isentropic Navier–Stokes equations with density-dependent viscosity vol.245, pp.12, 2008, https://doi.org/10.1016/j.jde.2008.03.014
  6. Global strong solution for 3D viscous incompressible heat conducting Navier–Stokes flows with non-negative density vol.263, pp.8, 2017, https://doi.org/10.1016/j.jde.2017.06.004
  7. Global well-posedness for the incompressible MHD equations with density-dependent viscosity and resistivity coefficients vol.67, pp.5, 2016, https://doi.org/10.1007/s00033-016-0722-3
  8. Elliptic estimates independent of domain expansion vol.34, pp.3, 2009, https://doi.org/10.1007/s00526-008-0186-1
  9. Strong solutions to the incompressible magnetohydrodynamic equations with vacuum vol.61, pp.9, 2011, https://doi.org/10.1016/j.camwa.2011.03.033
  10. Invariant elliptic estimates vol.382, pp.1, 2011, https://doi.org/10.1016/j.jmaa.2011.04.035
  11. Global strong solutions for nonhomogeneous heat conducting Navier-Stokes equations 2017, https://doi.org/10.1002/mma.4600
  12. Global strong solutions for 3D viscous incompressible heat conducting magnetohydrodynamic flows with non-negative density vol.446, pp.1, 2017, https://doi.org/10.1016/j.jmaa.2016.09.012
  13. Global strong solution for viscous incompressible heat conducting Navier–Stokes flows with density-dependent viscosity vol.16, pp.05, 2018, https://doi.org/10.1142/S0219530518500069
  14. Global strong solutions for 3D viscous incompressible heat conducting Navier-Stokes flows with the general external force vol.41, pp.12, 2018, https://doi.org/10.1002/mma.4915