• Title/Summary/Keyword: Submerged Breakwaters

Search Result 90, Processing Time 0.025 seconds

Development of New Type of Submerged Breakwater for Reducing Mean Water Level behind Structure (배후수위 저감효과를 가진 신기능 잠제의 개발)

  • Hur, Dong-Soo;Lee, Woo-Dong;Goo, Nam-Heon;Jeon, Ho-Seong;Jeong, Yeon-Myeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.130-140
    • /
    • 2017
  • Typically, a submerged breakwater is one of the good scene-friendly coastal structures used to reduce wave energy and coastal erosion. However, sometimes, a submerged breakwater also has a negative aspect in that a strong rip current occurring around an open inlet due to a difference in mean water levels on the front and rear sides of the structure leads to scouring. Such scouring has a bad effect on its stability. In order to eliminate this kind of demerit, this study investigated four new types of submerged breakwaters with drainage channels. First, hydraulic experiments were performed the typical and new structures. Then, the wave height and mean water level distributions around the structures were examined using the experimental results. Finally, it was revealed that the new type of submerged breakwater could efficiently reduce the mean water level on its rear side. In particular, in the case of new-type submerged breakwater 2, an average reduction efficiency of 71.2% for the difference between the mean water levels at the front and rear sides was shown in comparison with the typical one.

Design and Construction of the Cylindrical Slit Type Shore Structures

  • Lee, Joong-Woo;Nam, Ki-Dae;Park, Sang-Gill;Kim, Sug-Moon;Kang, Seok-Jin
    • Journal of Navigation and Port Research
    • /
    • v.33 no.9
    • /
    • pp.645-651
    • /
    • 2009
  • In this study, a series of laboratory experiments were carried out to investigate the weak reflection of regular and random water waves over a train of protruded permeable shore structures. A cylindrical slit type breakwater and the alternatives are employed and compared for reflecting and transmitting capabilities of incident waves including wave forces. A series of random waves were generated by using the Bretschneider-Mitsuyasu frequency and directional spectrum. Measured spectrum of irregular waves without breakwaters is verified by comparing with those of the input waves generated. Weak reflection is occurred at the breakwater center of the peak frequency. If the row of breakwaters is fixed at three layers and the relative height of breakwater is fixed at 0.6, around 45% of incident wave energy is reflected to offshore. It is also found that the transmission of directional random waves increases as the maximum frequency parameter increases. A very good agreement is observed. Reflection coefficients of permeable submerged breakwaters are less than those of impermeable breakwaters. The upside-down L shape is recommended for a small fishery harbor mooring in terms of reflecting capability and of practical application. The final design was applied to the wharf of a small beach of Seolly, near Namhae at the southeast coast of Korea.

Laboratory Experiments on Reflection of Regular Waves Over Submerged Breakwaters (수중방파제를 지나는 규칙파의 반사 실험)

  • Kim, Ji-Hun;Yoon, Jae-Seon;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.108.1-108.1
    • /
    • 2010
  • 본 연구에서는 수리모형실험을 통하여 규칙파를 적용한 수중방파제의 반사특성을 조사하였다. 수중방파제의 형상을 직사각형(${\theta}=90^{\circ}$), 사다리꼴(I)(${\theta}=75^{\circ}$), 사다리꼴(II)(${\theta}=60^{\circ}$), 삼각형(${\theta}=30.96^{\circ}$)으로 설정하여, 각각의 형상들에 대하여 주기, 입사파고, 배열을 변화시켜 얻은 실험결과를 토대로 투과율을 계산하였다.

  • PDF

Submerged Membrane Breakwaters I: A Rahmen Type System Composed of Horizontal and Vertical Membranes (수중 유연막 방파제 I : 수평-수직 유연막으로 구성된 라멘형 시스템)

  • 기성태
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.7-14
    • /
    • 2002
  • in the present paper, the hydrodynamics properties of a Rahmen type flexible porous breakwater interacting with obliquely or normally incident small amplitude waves are numerically investigated. This system is composed of dual vertical porous membranes hinged at th side edges of a submerged horizontal membrane. The dual vertical membranes are extended downward and hinged at seabed. The effects of permeability, Rahmen type membrane breakwater geometry pre-tensions on membranes, relative dimensionless wave number, and incident Wave headings are thoroughly examined.

Submerged Floating Wave Barrier

  • Kee S.T.;Park W.S.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.85-89
    • /
    • 2004
  • The wave interactions with fully submerged and floating dual buoy/vertical porous membrane breakwaters has been investigated in experimentally to validate the developed theory and numerical method in the previous study, in which multi-domain hydro-elastic formulation was carried out in the context of linear wave-body interaction theory and Darcy's law. It is found that the experimental results agrees well with the numerical prediction. Transmission and reflection can be quite reduced simultaneously especially in the region of long waves. The properly tuned system to incoming waves can effectively dissipate wave energy and also offset each other between incident and scattered waves using its hydro-elasticity and geometry.

  • PDF

Numerical Analysis on Deformation of Submerged Structures using 2-Dimensional VOF-DEM Model

  • Kim, Mi-Kum;Kim, Chang-Je
    • Journal of Navigation and Port Research
    • /
    • v.31 no.9
    • /
    • pp.785-791
    • /
    • 2007
  • In this paper we proposed a model that the deformation of the submerged rubble mound breakwaters composed with materials of various size, induced by wave action, can be computed. The water particle kinematics by waves in porous mound structure are computed by CADMAS-SURF, then the deformation of structure is computed using DEM module. To investigate the interaction of wave and sectional deformation of structures, analysis is accomplished by two steps. Analysis at the first step is executed with incipient mound. And analysis at the second step is executed with deformed mound by wave action. Furthermore, behaviors of materials are influenced by various properties such as the contact stiffness and the friction angle. Therefore, in order to present the behavior of the element caused by various properties, computations are accomplished with random coefficients by using the Monte Carlo simulation.

Wave Transformation of a Rubble-Mound Breakwater (사석방파제에 의한 파랑변형에 관한 연구)

  • Kang, I. S.;Kwak, K. S.;Kim, D. S.;Yang, Y. M.
    • Journal of Korean Port Research
    • /
    • v.8 no.2
    • /
    • pp.57-65
    • /
    • 1994
  • A theoretical formulation is performed to investigate the wave reflection and transmission ratios by a submerged multi-layered rubble-mound breakwater. This theory, which is based on the linear boundary integral method, can be extended to the multi-layered breakwater with arbitrary cross section. In the theoretical analysis evanescent mode wave is not considered, since fictitious open boundaries are put on the places far from the structure. Therefore the mathematical presentation may be simpler, and computational time shorter. The validity of obtained numerical results is demonstrated by comparing with ones of impermeable and permeable breakwaters. Comparison shows resonable agreement. On the basis of these verifications this theory is applied to the one and two-layered submerged rubble-mound breakwater with trapezoidal type.

  • PDF

A Numerical Study on Flow Control Structure of a New-Type Submerged Breakwater (신기능 잠제의 흐름 제어 기능에 관한 수치적 연구)

  • Hur, Dong-Soo;Lee, Woo-Dong;An, Sung-Wook;Park, Jong-Bae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.3
    • /
    • pp.181-190
    • /
    • 2010
  • In case of constructing submerged breakwaters, the circulation current is occurred around the open inlet because of mean water level difference between front and rear sides of them. The aim of this study is to investigate the flow control structure of new-type submerged breakwater which is able to reduce mean water level at rear side of it. At first, the numerical model (LES-WASS-3D) is validated by comparing with existing experimental data. And then, numerical simulation is carried out to examine wave height, mean water level and mean flow around the newtype submerged breakwater. From the numerical results, it can be pointed out that the new-type submerged breakwater with drainage system reduces the rip current around the open inlet.

Estimation on the Wave Transmission and Stability/Function Characteristics of the Submerged Rubble-Mound Breakwater (수중 잠제구조물의 파랑 전달율과 안정성 및 기능성 평가)

  • KIM Yong Woo;YOON Han Sam;RYU Cheong Ro;SOHN Byung Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.5
    • /
    • pp.528-534
    • /
    • 2003
  • The 2-D hydraulic experimental results for the submerged rubble-mound structure, we have been concerned with the slability/function characteristics of the structures by the effects of wave force, scour/deposition at the toe and the wave transmission ratio at the lee-side sea. So, to investigate the variation characteristics of the wave transmission ratio which depended on a geometrical structure of the submerged breakwater profiles, the critical conditions for the depth of submergence and crest width were obviously presented. In summary, the results lead us to the conclusion that the wave control capabilities of submerged breakwaters by the variation of the submergence depth is higher than about 4 times the degree at the efficiency than the that of crest width. The destruction of the covering block at the crest generated at the region which was located between the maximum and minimum damage curve, and it's maximum damage/failure station from the toe of the structure was $0.2\;L_s.$ As the wave transmission coefficient and the slope of the structure increase, the damage/failure ratio and the maximum scour depth at the toe was extended, respectively. When the maximum scour depth happened, the destruction of the covering block which was located at the toe generated at the front of the submerged rubble-mound breakwater. Finally, it was found from the results that the optimization of the structure may be obtained by the efficient decision of the submergence depth and crest width in the permissible range of the wave transmission ratio.