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Resonance and response of the submerged porous-membrane
breakwaters in oblique seas
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1. INTRODUCTION

The advantages of floating flexible membrane wave
barriers over conventional fixed breakwaters include
their reduced environmental impacts, ability of
relocation, simple sacrificial design, free from bottom
foundation consideration, and comparably low cots in
deep water constructions. The vertical floating
flexible membrane breakwater was investigated by
Thompson et al.(1992), Aoki et al.(1994), Kim and
Kee(1996), Williams(1996). Kim and Kee(1996)
showed that the a good performance can be
obtained in spite of appreciable sinusoidal motions
of membrane because the vertical sinusoidal
motions tends to generate only exponentially
decaying local (evanescent) wave in the lee side.

Chwang (1983) developed a porous wave maker
theory to study the problem of the generation of water
waves by the harmonic oscillation of thin permeable
plate immersed in water of finite depth, and found that
the porous effects reduce not only the wave amplitude
but also the hydrodynamic force acting on the
wavemaker. Yu and Chawang (1994) investigated
numerically the problem of reflection and transmission
of water waves by a horizontally submerged plate in
water of finite depth, and found that a plate with proper

porosity can suppress significantly the wave reflection.
Cho and Kim (2000) studied the interaction of
monochromatic incident waves with a horizontal
porous flexible membrane in the context of two-
dimensional linear hydro-elastic theory, and found that
the overall performance of the horizontal flexible
membrane can be further enhanced by using a proper
porous material.

Ideally, the breakwater should have minimum
transmission at lee side. It is also often desirable that
the reflection should be 'small. In addition the
breakwater has to be submerged (Kee and Kim. 1997,
Choi et al. 1998) in order to reduce the hydrodynamic
pressure on the body of structures, and insure the water
circulation to prevent stagnation and pollution in the
sheltered region. In this point of view, the performance
of the fully submerged floating buoy/porous-membrane
breakwaters is investigated for arbitrary incident wave
angles and for various permeability on membranes.
This breakwater system is able to reduce reflection and
transmission simultaneously, and is a very eco-friendly
system. The fully submerged system allows gaps to
exist over and beneath the structures hinged at some
distance over sea bottom, which enables wave
transmission through the gaps. The obliquely incident
surface waves traveling over long horizontal submerged
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cylindrical buoy can be trapped inside of the dual
system, which act as wave scatterer reducing the wave
amplitude, and excites the energy dissipation through
fine-pores on membranes,

To assess the efficiency of this dual submerged
porous-flexible system, two-dimensional multi-domain
hydro-eiastic formulation was carried out in the context
of linear wave-body interaction theory and Darcy’s law.
The hydrodynamic interaction of oblique incident
waves with the combination of the rigid and porous-
flexible bodies was solved by the distribution of the
simple sources (modified Bessel function of the second
kind) that satisfy the Helmholz governing equation. The
velocity potentials of wave motion are fully coupled
with membrane deformation and porous damping based
on Darcy’s law.

2. THEORY AND NUMERICAL METHOD

An inertial, Cartesian coordinate system (x, y) with
its origin located at the still water level is used as
reference system. As shown in Fig. 1, the submerged
dual system is composed of fully submerged buoy/
vertical-flexible-porous-membrane placed in parallel
with spacing, and allows flow passing over and beneath
structures.

Ty Ty T
Fig. 1. Coordinate system and integration domains for
dual fully submerged buoy/porous-membrane
breakwater

The integration fluid domain is subdivided into three
domains. An incident wave train with small amplitude
A and harmonic motion of frequency @ propagates
towards the breakwater with an angle & (wave
heading) with respect to x axis in water of constant
depth & . For ideal fluids, the wave field may be
represented by a velocity potential of an oblique wave
as

D(x, 5,z =Re[{4,(x, 1) +(x =" (1)

where Re denotes the real part of a complex
expression, 1= V=1, ¢ denotes time, and &, = k,sin@
is the wave number component in the z direction, and
k, is the wave number of the incident wave, which is
the positive real solution of the dispersion equation
o’ =kgtanhkh with g being the gravitational
coefficient. Then, the velocity potential of small
amplitude of wave train height A, wavenumber k,,
and wave heading @ is given by

gAcoshk(y+h) i cosox
¢°=_g_ o(.y )eth, 6. (2)
@  coshkh

@, is the known incident potential and ¢ is the time-
independent unknown scattered potential, which
includes both diffraction and radiation effects. The
complex velocity potentials, ¢, in three fluid domains
1=1,2,3 (see Fig. 1.), satisfy the Helmholtz equation as
governing equation and the following linearized free-
surface (I’ ), bottom (I,), and Sommerfeld radiation
conditions (I';):

Vg, — k24, =0 nQU=123) 3)
) |

-+ g% ~0 (T, @

&

% =0 (on I,) (5)

lm(Z-2ik)$)=0 (n T l=13)  ©

where T is the vertical truncation boundaries at far
fields and n= (HX,H},) is the unit outward normal
vector. Along the vertical fictitious boundaries
(matching boundaries) in fluids x=0 and x=d,, the
pressure and normal velocity are required to be
continuous as follows;

% 3
¢’=¢l+l > ﬁ=—&

= pw at I', @)

Based on Darcy’s law the normal velocity inside of
membrane with fine pores is linearly proportional to the
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pressure difference between the two sides of the
membrane (Chwang 1983).

B B . —io
W(yst)=_(p1 _p2)=;pl“{¢l_¢l+l]e !
=wye™! at x=0,d, ®

The scattered potentials must satisfy the
following linearized kinematic boundary
conditions on the membrane surface:

B __ P
L =—E —jeol+
r ™ S+ W)
. B .
=-iwg +—;pm{¢1 ~&1u] %)
where 4 is constant coefficient of dynamic

viscosity, p is constant fluid density, and Bis a
material constant called permeability having the
dimension of a length, and the harmonic membrane
motions Z(y,0)=Re[£(1)e™] in Egs. (8)~(9).
For simplicity, the heave motion of the buoy is
assumed to be negligible under large initial tension
of membrane. Then the boundary condition on the
floating buoy is

¢l =0

—=+iw{nn, +mn,

1—1,2,3 (on Tp) {10)

where n,=xn,—yn, . To solve the present
boundary value problem, a three-domain boundary
integral equation method using simple sources along
the entire boundary is developed. Two truncation
boundaries () are located sufficiently far from the
membrane such that the Sommerfeld condition (6) is
valid.

The fundamental solution (Green function) of the
Helmholtz Eq. (3) is G=—(1/2x)K(k,r) . Here
K (k) =~-y —In(k,r/2) is the modified zeroth-order
Bessel function of the second kind, and r is the
distance from the source point ( X, ¥ ) to the field point

(xy) As r—>0, one obtains the asymptotic
behavior, where @ is known as Euler’s
constant.

Applying Green's second identity in each of the
domains to the unknown potentials ¢1 and imposing the
relevant boundary conditions Egs. (4)~(10), the integral
equations in each fluid domain can be written as

O+ |, UK.ty 2 ~vK (k1
+ '(rc[szl(kzr)—Zni— ik K, (k,r)}g,dr
+ [ KD+ 10K (hor ), + mym )

+jr K (k= %o o

+ jrm¢,{k,1<.(k,r)5— 5= iowK (k)
+§, S ipwK (N + 50O Ktk

+ jrb¢,k21<,(k,r)%ar=0 (1=123) (11)

where v=w’/g is the infinite-depth wave
number, C=solid-angle constant, 5 =1, §=-1, and
in domain II s, =
side of front membrane and forward side of rear

-1, and s, =1 are for backward

membrane respectively.

The integral Eq. (11) should be coupled with the
equations of motion of the membranes &,, ¢, and
buoys 7, , 7, . In addition, the disturbance
potentials must satisfy the following linearized
dynamic boundary conditions on the membrane
surface:

2
e =L2 -4 (on T,) (12)
dy

where A=wvm/T with T and m being the
membrane tension and mass per unit length
respectively. For a numerical approach the discrete
form of equation of membrane motion for j—th
element is given by

ok %
ag a{ JH

=-ml®*¢ (13)

pi( By, = b)) = T (52 + T (SE

where (86/0¢);=(Eny =S )/ AL, , 1 is the
length of the j—th segment, and A, =(/;+1,)/2.
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The geometric boundary conditions at the seabed and
the top connection points of membrane (0,~r7,) are
§=0at y=-h, &=n+Rn, at y=-r,. Ris
distance from the connection point (0,-r,) to rotation
center of buoy. .

As mentioned before, it is assumed that the
heave response is negligible due to large initial
tension. The coupled equations of motion for sway
and roll are given by

M(-0*)X=F,-(Kys+ K,) X~ F + F, (14)

where X is displacement of sway and roll, M is a
mass matrix of buoy, F, is hydrodynamic forces and
moments on buoy, K is the restoring forces and
moments due to the hydrostatic pressure, K, is sway
and roll mooring stiffness coefficients including the
effects of pretension, F, is the nonlinear viscous drag
force, and these are detailed in Kee & Kim (1997). The
symbol F; is forces and moments on the buoys caused
by the initial tension of membrane at the connection
points between membranes and buoys.

T —sina (15)
T D) Rsing, cosa — Reos7, sina

where a is the angle of membrane at the
connections with respect to the y axis and the symbol
R is the radial distances from the center of rotation of
buoy to the connection point on buoy. Assuming the
angle a is small, then
sina =-(0¢/V¢),, .., and Eq. (15) can be rewritten as

cosa =1 s

2 2 2
1Nm 1Nm 7’1 IN,,,

Fr =T 2R 1R {’7 = Tty 2R S (16)
— R+— |8 —
INm INm INm

This equation is composed of two terms: positive
restoring forces and moments to the each buoy, and
excitation force proportional to the motion amplitude of
the neighboring membrane element. Therefore, the
membrane tensions can be either restoring forces or
excitations.

So far, we have obtained integral Eq. (11) for
#,7=1,23, and equation of membrane motion (13)
and equations of buoy motions (14). They are mutually
coupled, so they need to be solved simultaneously. If
we discretize fluid domain I and 3 by NE, segments,
and discretize middle domain 2 by NE, , we have
2NE, + NE, unknowns for 4, ¢,, and ¢,, N, +
N,, unknowns for &, and & , and four more
unknowns 77, , 77, and 7, ,7,, , where the sub
notations f,r mean front and rear respectively.
Therefore, we have to solve N7 number of linear

simultaneous equations.

NT=2NE,+NE +N,+N, +4 a7

3. NUMERICAL RESULTS AND DISCUSSIONS

The three-domain boundary element program has
been developed based on linear potential theory and
Darcy’s law as described in the preceding section, and
was used to demonstrate the performance of fully
submerged dual buoy/porous-membrane floating
breakwaters in oblique seas. The computational domain
is defined as in Fig. 1. The two submerged system is

situated in parallel with spacing d,. The submerged

buoy/porous-membrane system allows gap Co Cp

Cys Gy, Which present front free surface gap, front
bottom gap, and rear free surface gap, rear bottom gap
respectively.

When the buoy is absent or negligibly small, the
results with increasing the number of segments is
converged well (not presented here). As coordinate
system and computational domain are defined in Fig. 2,
the two submerged membrane system in parallel with
spacing and gaps. The convergence test of the
developed BEM program has been done for the system
design parameter 7 = 0.255, ¢, /h=0.125,d_ [h=1.

CH=0.325h . Cr=0.125h

Py

—* ~— .
Cw=0.128hF Cro=0.125h}

Fig. 2. Definite sketch of dual submerged permezible
membrane breakwater
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Figs. 3a~3b shows the results with increasing the
permeability coefficient B =0, 1E-09, 5E-09, 1E-08,
5E-08, 1E-07, 5E-07, 1E-06. T is non-dimensional
tension of membrane by (T / pgh?). Fig. 3a. shows
wave reflection coefficients converged continuously
according to the various B values.

Fig. 3b shows the energy relation error (%) with
respect to varying B values. It is interesting that the
limit value of B for maximum energy dissipation exist
over all frequencies kh =0.2 ~ 6 for beam seas. When
B is greater than 1E-07, the energy dissipation effects
starts to be diminished at kA =42, and gradually
reduced over all frequency band as B further increased.
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Fig. 3a. Convergence Test; Reflection coefficients of
varying permeability of membrane
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Fig. 3b. Convergence Test; Energy relation coefficients
of varying permeability of membrane

The comparison of performances for an ideal dual
submerged membranes wave barrier of
T =0.255,¢, /h=0.125,d,/h=1 with and without
permeability is presented in Figs. 4a~4b. as function of
kh and 6.
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Fig. 4a. The transmission coefficients as function of
kh, @,and B=0
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Fig. 4b. The transmission coefficients as function of
kh, 8,and B=1E -8

In the oblique scas, the effective wavelength in the
x-direction becomes shorter and submerged systems
with or without permeability (B=1E-07) turns out to be
little effective. When the initial tension is relatively
large, gap is not small compared to wave length, the
positive effects of membrane hydrodynamics is
diminished for the shorter wavelength in oblique sea.

In reality, the buoyancy force of buoys can easily
provide the external tensions in membrane. However,
the presence of large buoys can significantly change
the scattered wave field. In addition the permeability on
membrane dissipates the fluctuations by re-reflected
and radiated waves between two submerged vertical
systems, and behaves as dampers with relevant to its
velocity.

The convergence test for the submerged dual
buoy/porous-membrane BEM code shows, in Fig. 5,
that permeability of membrane can enhance the
efficiency only at the limited range of frequencies. The
tested model is 7, /K, =0.1, T,/K,, =0, ¢,/a,=0.02,

a;,/h=02, ¢, /h=0.125 d,/h=1. As B increased,
the transmitted wave is decreased at some region of
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frequencies kh=02~1.5 and kh=5.~6., and the
transmitted wave is increased at kh=3.5~5.0 as
shown in Fig. 5. As B increase, the reflection
coefficient is gradually reduced up to B=1E-07, and
starts to increase. It means that the hydrodynamic
effects by membrane motions in vertical sinusoidal
manner are less than that of buoys for dual system with
highly permeable membranes.

[
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Fig. 5. The transmission coefficients with varying
permeability of membrane for 8 =0.

The performance of dual submerged buoy/solid-
membrane floating wave barriers for
T,/K,=0,T/K, =01, t,/a,=0.02, a,/h=0.2,
cx/h=0.05,d,/h=1is shown in Fig. 6. These two
systems have same design parameters, and allow semi-
pivotal motions of buoys with only joint moorings.
Thus we can observer several resonance in the
performances, in which will be subsequent to system
failure or give severe damages on the integrity of
structures. After putting a permeability B=3E-08 on
the membranes, the resonance is quite diminished in
transmission and reflection as shown in Fig. 7.
Therefore permeability coefficient B=3E-08 seems to
be proper to maximize the performance based on the
energy dissipation within dual buoy/porous-membrane
systems.

The amplitudes of buoy/porous-membrane motion or
forces on membranes are also of practical interest for
the given system. Figs. 8a~8b. show the profiles of the
non-dimensional membrane response amplitudes (per
unit incident wave amplitude as function of %k and
vertical position y/h for beam seas. As expected, the

Fig. 6. The transmission coefficients as function of kh,
G,and B=0

Fig. 7. The transmission coefficients as function of kk,
@,and B=1E-8

response amplitude sharply increased at resonance
frequencies, which generate large propagating waves in
lee side. It is interesting that motion amplitude of rear
membrane for B =3E-8 is quite small compare to
that of B =0one. It just implies that peak amplitudes
except the very low one are at the near frequencies of
system resonance.

Fig. 8a. Responses of a rear membrane as function of
kh and y/h for #=0°and B=0
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Fig. 8b. Responses of a rear membrane as function of
kh and y/h for 6=0°and B=3E-8

The motion amplitudes of rear buoy are shown in
Figs. 9a~9b, and sway motion amplitude of rear buoy
for #=0° is small enough for us to see near zero
motion at kh=1.5.

Fig. 9a. Sway motion of rear cylinder as function &k
and 8 for B=0

Fig. 9b. Sway motion of rear cylinder as function kA
and @ for B=3F-8

The sharp in motion amplitudes of
buoy/membrane are completed eliminated after
applying permeability on membranes. The comparison

spikes

of rear motions for B=0 and for B=3E-8 shows that
high peak amplitudes are significantly reduced.

Therefore the proper permeability on membranes
seems to magnify the performances of breakwater
system by energy dissipation within dual buoy/porous-
membranes.

4. SUMMARY AND CONCLUSIONS

The interaction of oblique incident waves with
submerged dual buoy/porous-membrane was solved in
the context of two-dimensional linear hydro-elastic
interaction theory and Darcy’s law. Both the ideal
system composed of only submerged dual porous-
membrane with spacing  and more practical dual
submerged buoy/porous-membrane systems were
considered. .

Using the developed program code, the performance
of fully submerged dual systems in oblique waves was
tested with various breakwater design parameters,
wave conditions, and permeability on membranes.
From these examples, it is shown that the use of the
submerged dual buoy/flexible porous-membranes can
significantly increase the overall wave blocking
efficiency in normal and oblique incident waves except
long wave frequencies. Allowing proper motions of
buoys and membranes, the mutual cancellation effect
of incident waves and scattered waves significantly
enhance the performance as breakwaters. In addition,
applying proper permeability on membrane eliminates
resonance of system to secure the safety of structural
dynamics, and reduces transmission and reflection.
Using a properly devised asymmetric system, which
can complement each other, we can further enhance the
efficiency. In most cases, mooring type, gaps, proper
permeability, and size of buoy for sufficiently large
membrane tension needs to be provided to guarantee
high performance over a wide range of wave
frequencies.
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