References
- 이우동, 허동수, 박종배, 안성욱 (2009). 해빈경사에 따른 잠제개구부의 3차원적인 흐름특성에 관한 연구. 한국해양공학회지, 23(1), 7-15.
- 허동수, 김도삼 (2003). 경사수역에 설치된 잠제 주변의 유속장과 와의 발생에 대한 수치모의. 한국해안.해양공학회지, 15(3), 151-158.
- 허동수, 이우동, 염경선 (2009). 잠제 설치 연안역의 파동장에 미치는 해안곡률의 영향. 대한토목학회논문집, 29(5B), 463-472.
- 허동수, 이우동 (2007). 잠제 주변의 파고분포 및 흐름의 3차원 특성; PART I-해빈이 없을 경우. 대한토목학회논문집, 27(6B), 689-701.
- 허동수, 이우동 (2008a). 잠제 주변의 파고분포 및 흐름의 3차원 특성; PART II-해빈이 있을 경우. 대한토목학회논문집, 28(1B), 115-123.
- 허동수, 이우동 (2008b). 잠제 설치 연안의 처오름 높이 특성; PART I-잠제의 평면배치에 의한 영향. 대한토목학회논문집, 28(3B), 345-354.
- 허동수, 이우동 (2008c). 잠제 설치 연안의 처오름 높이 특성; PART II-잠제의 제원에 의한 영향. 대한토목학회논문집, 28(4B), 429-439.
- 허동수, 이우동, 배기성 (2008). 사각격자체계 수치모델에서의 경사면 처리기법에 관하여. 대한토목학회논문집, 28(5B), 591-594.
- 허동수, 최동석 (2008). 투과성잠제의 비탈면경사가 주변 파동장에 미치는 영향. 대한토목학회논문집, 28(2B), 249-259.
- Ergun, S. (1952). Fluid flow through packed columns. Chem Eng., 48(2), 89-94.
- Garcia, N., Lara J.L. and Losada, I.J. (2004). 2-D numerical analysis of near-field flow at low-crested permeable breakwater, Coastal Eng., 51, 991-1020. https://doi.org/10.1016/j.coastaleng.2004.07.017
- Hsu, T.W., Hsieh, C.M. and Hwang, R.R. (2004). Using RANS to simulate vortex generation and dissipation around impermeable submerged double breakwaters. Coastal Eng., 51, 557-579. https://doi.org/10.1016/j.coastaleng.2004.06.003
- Hur, D.S. (2004). Deformation of multi-directional random waves passing over an impermeable submerged breakwater installed on a sloping bed. Ocean Eng., 31, 1295-1311. https://doi.org/10.1016/j.oceaneng.2003.12.005
- Johnson, H. K., Karambas, T. V., Avgeris, I., Zanuttigh, B., Gonzalez-Maroco, D. and Caceres, I. (2005). Modelling of waves and currents around submerged breakwaters. Coastal Eng., 52, 949-969. https://doi.org/10.1016/j.coastaleng.2005.09.011
- Johnson, H.K. (2006). Wave modelling in the vicinity of submerged breakwaters. Coastal Eng., 53, 39-48. https://doi.org/10.1016/j.coastaleng.2005.09.018
- Kramer, M., Zanuttigh, B., van der Meer, J.W., Vidal, C. and Gironella, F.X. (2005). Laboratory experiments on low-crested breakwaters. Coastal. Eng., 52, 867-885. https://doi.org/10.1016/j.coastaleng.2005.09.002
- Liu, S. and Masliyah, J.H. (1999). Non-linear flows in porous media. J. Non-Newtonian Fluid Mech., 86(1), 229-252. https://doi.org/10.1016/S0377-0257(98)00210-9
- Losada, I.J., Losada, M.A. and Martin, F.L. (1997). Harmonic generation past a submerged porous step, Coastal Eng., 31, 281-304. https://doi.org/10.1016/S0378-3839(97)00011-2
- Ma, H.H., Mizutani, N., Eguchi, S. and Hur, D.S. (2004). Study on beach profile change and wave induced velocity field in permeable beach. Journal of Civil Engineering in the Ocean, JSCE, Vol. 20, pp. 509-514 (in Japanese). https://doi.org/10.2208/prooe.20.509
- Martinelli, L., Zanuttigh, B. and Lamberti, A. (2006). Hydrodynamic and morphodynamic response of isolated and multiple low crested structures: Experiments and simulations. Coastal Eng., Vol. 53, pp. 363-379. https://doi.org/10.1016/j.coastaleng.2005.10.018
- Osanai, K. and Minami, M. (2003). Experimental study on vertical velocity distribution around the opening of artificial reefs. Journal of Civil Engineering in the Ocean, JSCE, 19, 213-218 (in Japanese). https://doi.org/10.2208/prooe.19.213
- Smagorinsky, J. (1963). General circulation experiments with the primitive equation, Mon. Weath. Rev. 91(3), 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
- Sakakiysma, T. and Kajima, R. (1992). Numerical simulation of nonlinear wave interacting with permeable breakwater. Proc. 23rd Int. Conf. Coastal Eng., ASCE, 1517-1530.
- van Gent, M.R.A. (1995). Wave interaction with permeable coastal structures, Ph.D. Thesis, Delft University The Netherlands.
- Zanuttigh, B. (2007). Numerical modelling of the morphological response induced by low-crested structures in Lido di Dante, Italy. Coastal Eng., Vol. 54, pp. 31-47. https://doi.org/10.1016/j.coastaleng.2006.08.003
- Zysermana, J.A., Johnsona, H.K., Zanuttigh, B. and Martinelli, L. (2005). Analysis of far-field erosion induced by low-crested rubble-mound structures. Coastal Eng., Vol. 52, pp. 977-994. https://doi.org/10.1016/j.coastaleng.2005.09.013