• Title/Summary/Keyword: Sublethal damage repair

검색결과 6건 처리시간 0.024초

탄소 빔 분할조사 시 Linear-Quadratic모델, Incomplete-Repair모델, Marchese 모델 결과 비교 (Comparison of Linear-Quadratic Model, Incomplete-Repair Model and Marchese Model in Fractionated Carbon Beam Irradiation)

  • 최은애
    • 한국방사선학회논문지
    • /
    • 제9권6호
    • /
    • pp.417-420
    • /
    • 2015
  • 본 연구는 탄소 빔의 분할조사 후 세포생존율 (Surviving Fraction, SF) 값에 따른 Linear-Quadratic model, Incomplete Repair model, Marchese model의 결과값을 비교하기 위해 진행하였다. 탄소 빔을 4fraction까지 조사한 후 얻은 세포생존율 값을 바탕으로 mathematica 프로그램 (ver 9.0)을 이용하여 각각의 모델로 결과값을 얻어 비교해 보았다. 그 결과 즉시 NB1RGB를 시딩한 값은 repair가 감안되지 않은 LQ 모델이 적합하였지만 fraction 시행한 후의 결과값은 오차를 보였다. 따라서 Potentially Lethal Damage Repair (PLDR)과 Sublethal Damage Repair (SLDR)의 발생을 각각 감안한 repair 모델을 이용하여 적합한지 판단하였다. 이를 바탕으로 탄소 빔의 분할 조사 시 LQ 모델에 각각의 repair의 양을 감안한 새로운 회복 관련 모델의 적용 가능성을 보고자 하였다.

단일조사와 분할조사시 마우스 공장 소낭선세포의 방사선효과에 관한 실험적 연구 (Radiation Effect on Mouse Jejunal Crypt Cells by Single and Split Irradiation)

  • 고병희;함창곡;김정진;박찬일
    • Radiation Oncology Journal
    • /
    • 제3권1호
    • /
    • pp.1-8
    • /
    • 1985
  • To determine the dose·survival and repair characteristics of the jejunal crypt cells, experimental study was carried out using total 70 mice. Single or split irradiations of 1,100 to 2,200 rad were delivered to whole bodies of $C_{57}$ BL mice, using a cesium 137 animal irradiator and those mice were sacrificed after 90 hours. The number of regenerating crypts per jejunal circumference was counted by a jejunal crypt cell assay technique and dose·response curve was measured. The results were as follows : 1. The average number of jejunal crypts per circumference in control group was 140. In a single irradiation group, the number of regenerated jejunal crypts was, 125, 56, 2 in each subgroup of 1,100 rad, 1,400 rad and 1,800 rad respectively. In split irraiation group, it was 105,44,2 in each subgroup of 1,400rad 1,800rad and 2,200rad respectively. 2. Mean lethal dose of mouse jejunal crypt cell was 167 and 169 rad respectively in a single and split irradiation. 3. Repair dose of sublethal damage was 280 rad. 4. Sublethal damage was completely repaired within 4 hours between the split dose of irradiation.

  • PDF

Genome-Wide Response of Deinococcus radiodurans on Cadmium Toxicity

  • Joe, Min-Ho;Jung, Sun-Wook;Im, Seong-Hun;Lim, Sang-Yong;Song, Hyun-Pa;Kwon, Oh-Suk;Kim, Dong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권4호
    • /
    • pp.438-447
    • /
    • 2011
  • Deinococcus radiodurans is extremely resistant to various genotoxic conditions and chemicals. In this study, we characterized the effect of a sublethal concentration (100 ${\mu}M$) of cadmium (Cd) on D. radiodurans using a whole-genome DNA microarray. Time-course global gene expression profiling showed that 1,505 genes out of 3,116 total ORFs were differentially expressed more than 2-fold in response to Cd treatment for at least one timepoint. The majority of the upregulated genes are related to iron uptake, cysteine biosynthesis, protein disulfide stress, and various types of DNA repair systems. The enhanced upregulation of genes involved in cysteine biosynthesis and disulfide stress indicate that Cd has a high affinity for sulfur compounds. Provocation of iron deficiency and growth resumption of Cd-treated cells by iron supplementation also indicates that CdS forms in iron-sulfur-containing proteins such as the [Fe-S] cluster. Induction of base excision, mismatch, and recombinational repair systems indicates that various types of DNA damage, especially base excision, were enhanced by Cd. Exposure to sublethal Cd stress reduces the growth rate, and many of the downregulated genes are related to cell growth, including biosynthesis of cell membrane, translation, and transcription. The differential expression of 52 regulatory genes suggests a dynamic operation of complex regulatory networks by Cd-induced stress. These results demonstrate the effect of Cd exposure on D. radiodurans and how the related genes are expressed by this stress.

인체 암세포주에서 방사선감수성의 지표간의 상호관계 (Correlation Between the Parameters of Radiosensitivity in Human Cancer Cell Lines)

  • 박우윤;김원동;민경수
    • Radiation Oncology Journal
    • /
    • 제16권2호
    • /
    • pp.99-106
    • /
    • 1998
  • 목적 : 임상에서 발생빈도가 높은 위선암, 폐선암, 망막세포종, 자궁경부 편평상피암의 4가지 인 체암세포주(MKN-45, PC-14, Y-79, HeL)를 이용하여 방사선조사후 세포생존분획 및 세포생존곡선의 모양을 결정하는 지표를 구하고 방사선조사후 손상 회복정도를 측정하여 이들 여러 지표간의 상관관계 여부를 구명하기 위하여 본실험을 시행하였다. 대상 및 방법 :각 세포주의 방사선감수성을 보기 위하여 1, 2, 3, 5, 7 및 10Gy의 방사선을 1 회 조사하였고 방사선조사후 준치사손상 회복정도를 보기 위하여 5Gy씩 2회의 방사선조사를 0, 1, 2, 3, 4, 6 및 24시간 간격으로 시행하였다. 세포의 생존분획은 $Sperman-K\"{a}rbor$ 방법으로 세포집락형성능력을 측정하여 산출하였으며 생존곡선의 수학적 분석은 linear-quadratic(LQ), multitarget-single hit(MS) 모형과 mean inactivation $dose(\v{D})$를 이용하였다. 결과 : 방사선조사후의 세포생존 실험결과 2Gy에서의 세포생존분획(SF2)은 0.174에서 0.85까지 다양하게 나타났으며 Y-79는 유의하게 낮은 SF2를, PC-14는 높은 SF2를 나타내었다(p<0.05, t-test). LQ model로 분석한 방사선 세포생존곡선의 분석결과 Y-79, MKN-45, HeLa, PC-14에서 ${\alpha}$가 각각 0.603, 0.355, 0.275, 0.102이었고 ${\beta}$는 각각 0.005, 0.016, 0.025, 0.027이었다. MS model로 분석한 결과는 Y-79, MKN-45, HeLa, PC-14에서 Do가 각각 1.59, 1.84, 1.88, 2.52였고 n은 0.97, 1.46, 1.52, 1.69를 보였다. 한편 Gauss-Laguerre방법으로 계산한 $\v{D}$는 Y-79, MKN-45, HeLa, PC-14에서 각각 1.62, 2.37, 2.61, 3.95였다. SF2가 감소함에 따라 ${\alpha}$값은 증가하였고 Do, $\v{D}$값은 감소하였으며 이들간의 Pearson 상관계수는 각각 0.953, 0.993, 0.999였다. (p<0.05). 분할조사에 의한 준치사손상 회복정도는 약 4시간 내외에 포화상태에 도달하였으며 포화상태의 recovery ratio(RR)는 2에서 3.79 사이였다. RR은 방사선감수성의 지표인 SF2, ${\alpha}$, ${\beta}$, Do, $\v{D}$과 통계학적으로 유의한 상관관계를 나타내지 않았다. 결론 : 본 연구의 결과 네가지 인체상피암세포주의 내재적 발사선감수성은 서로 상이하였으며 Y-79가 가장 민감하였고, MKN-45와 HeLa는 각각 중등도의 방사선감수성을 나타냈으며 PC-14는 방사선감수성이 가장 낮았다. 이와같은 감수성의 차이는 SF2, ${\alpha}$, Do와 $\v{D}$의 차이로 나타났으며 띠들간에는 밀접한 상관관계를 나타내었다. 방사선에 의한 준치사손상 회복력은 MKN-45와 HeLa에서 높게 나타났고 회복력과 방사선감수성과는 무관하였다. 각 암세포주에 따르는 이와같은 지표들은 향후 방사선치료 효과를 높이기 위한 방사선생물학 실험의 기초 자료로서 이용되어 질 수 있을 것이다.

  • PDF

Enhancement of radiation effect using beta-lapachone and underlying mechanism

  • Ahn, Ki Jung;Lee, Hyung Sik;Bai, Se Kyung;Song, Chang Won
    • Radiation Oncology Journal
    • /
    • 제31권2호
    • /
    • pp.57-65
    • /
    • 2013
  • Beta-lapachone (${\beta}$-Lap; 3,4-dihydro-2, 2-dimethyl-2H-naphthol[1, 2-b]pyran-5,6-dione) is a novel anti-cancer drug under phase I/II clinical trials. ${\beta}$-Lap has been demonstrated to cause apoptotic and necrotic death in a variety of human cancer cells in vitro and in vivo. The mechanisms underlying the ${\beta}$-Lap toxicity against cancer cells has been controversial. The most recent view is that ${\beta}$-Lap, which is a quinone compound, undergoes two-electron reduction to hydroquinone form utilizing NAD(P)H or NADH as electron source. This two-electron reduction of ${\beta}$-Lap is mediated by NAD(P)H:quinone oxidoreductase (NQO1), which is known to mediate the reduction of many quinone compounds. The hydroquinone forms of ${\beta}$-Lap then spontaneously oxidizes back to the original oxidized ${\beta}$-Lap, creating futile cycling between the oxidized and reduced forms of ${\beta}$-Lap. It is proposed that the futile recycling between oxidized and reduced forms of ${\beta}$-Lap leads to two distinct cell death pathways. First one is that the two-electron reduced ${\beta}$-Lap is converted first to one-electron reduced ${\beta}$-Lap, i.e., semiquinone ${\beta}$-Lap $(SQ)^{{\cdot}-}$ causing production of reactive oxygen species (ROS), which then causes apoptotic cell death. The second mechanism is that severe depletion of NAD(P)H and NADH as a result of futile cycling between the quinone and hydroquinone forms of ${\beta}$-Lap causes severe disturbance in cellular metabolism leading to apoptosis and necrosis. The relative importance of the aforementioned two mechanisms, i.e., generation of ROS or depletion of NAD(P)H/NADH, may vary depending on cell type and environment. Importantly, the NQO1 level in cancer cells has been found to be higher than that in normal cells indicating that ${\beta}$-Lap may be preferentially toxic to cancer cells relative to non-cancer cells. The cellular level of NQO1 has been found to be significantly increased by divergent physical and chemical stresses including ionizing radiation. Recent reports clearly demonstrated that ${\beta}$-Lap and ionizing radiation kill cancer cells in a synergistic manner. Indications are that irradiation of cancer cells causes long-lasting elevation of NQO1, thereby sensitizing the cells to ${\beta}$-Lap. In addition, ${\beta}$-Lap has been shown to inhibit the repair of sublethal radiation damage. Treating experimental tumors growing in the legs of mice with irradiation and intraperitoneal injection of ${\beta}$-Lap suppressed the growth of the tumors in a manner more than additive. Collectively, ${\beta}$-Lap is a potentially useful anti-cancer drug, particularly in combination with radiotherapy.

Radiosensitivity Enhancement by Arsenic Trioxide in Conjunction with Hyperthermia in the EC-1 Esophageal Carcinoma Cell Line

  • Cui, Yan-Hui;Liang, Hai-Jun;Zhang, Qing-Qin;Li, Si-Qing;Li, Xiao-Rui;Huo, Xiao-Qing;Yang, Qing-Hui;Li, Wei-Wei;Gu, Jian-Fa;Hua, Qin-Liang;Lu, Ping;Miao, Zhan-Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권4호
    • /
    • pp.1693-1697
    • /
    • 2012
  • Objective: To explore the effect on radiosensitivity of arsenic trioxide ($As_20_3$) in conjunction with hyperthermia on the esophageal carcinoma EC-1 cell line. Method: Inhibition of EC-1 cell proliferation at different concentrations of $As_20_3$ was assessed using the methyl thiazolyl blue colorimetric method (MTT method), with calculation of $IC_{50}$ value and choice of 20% of the $IC_{50}$ as the experimental drug concentration. Blank control, $As_20_3$, hyperthermia, radiotherapy group, $As_20_3$ + hyperthermia, $As_20_3$ + radiotherapy, hyperthermia + radiotherapy and $As_20_3$ + hyperthermia + radiotherapy groups were established, and the cell survival fraction (SF) was calculated from flat panel colony forming analysis, and fitted by the 'multitarget click mathematical model'. Flow cytometry (FCM) was used to detect changes in cell apoptosis and the cell cycle. Results: $As_20_3$ exerted inhibitory effects on proliferation of esophageal carcinoma EC-1 cells, with an $IC_{50}$ of 18.7 ${\mu}mol/L$. After joint therapy of $As_20_3$ + hyperthermia + radiotherapy, the results of FCM showed that cells could be arrested in the $G_2$/M phase, and as the ratio of cells in $G_0/G_1$ and S phases decreased, cell death became more pronounced. Conclusion: $As_20_3$ and hyperthermia exert radiosensitivity effects on esophageal carcinoma EC-1 cells, with synergy in combination. Mechanistically, $As_20_3$ and hyperthermia mainly influence the cell cycle distribution of EC-1 esophageal carcinoma cells, decreasing the repair of sublethal damage and inducing apoptosis, thereby enhancing the killing effects of radioactive rays.