• Title/Summary/Keyword: Subjective learning

Search Result 321, Processing Time 0.027 seconds

Analysis of Subjectivity on Good Universities of Science and Engineering Graduates (이공계 졸업생의 좋은 대학에 대한 주관적 인식 유형 분석)

  • Hong, Seongyoun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.4
    • /
    • pp.445-457
    • /
    • 2022
  • The purposes of this research are to identify the subjective perception type of science and engineering graduates about good university and to analyze the differences of their undergraduates' experiences among types. Using Q methodology, 29 statements about a good university, reflecting on the previous research as well as quality assurance criteria in higher education, were administered to 16 science and engineering graduates for ranking using a Q-sort procedure. As a result 16 graduates were classified into three types according to their preference for 29 statements. Type 1, oriented student experience, recognized that a good university encourages students to participate in various activities and experiences. Type 2, oriented institutional outcomes, recognized that a good university is ranked high in criteria such as employment rate, research outcome, and entrance exam scores etc. Type 3, oriented educational activity, recognized that a good university is regarded as a community focusing on teaching and learning. Finally, considering the finding of the research, some pedagogical and administrational implications were suggested for quality improvement in higher education.

Design of visitor counting system using edge computing method

  • Kim, Jung-Jun;Kim, Min-Gyu;Kim, Ju-Hyun;Lee, Man-Gi;Kim, Da-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.75-82
    • /
    • 2022
  • There are various exhibition halls, shopping malls, theme parks around us and analysis of interest in exhibits or contents is mainly done through questionnaires. These questionnaires are mainly depend on the subjective memory of the person being investigated, resulting in incorrect statistical results. Therefore, it is possible to identify an exhibition space with low interest by tracking the movement and counting the number of visitors. Based on this, it can be used as quantitative data for exhibits that need replacement. In this paper, we use deep learning-based artificial intelligence algorithms to recognize visitors, assign IDs to the recognized visitors, and continuously track them to identify the movement path. When visitors pass the counting line, the system is designed to count the number and transmit data to the server for integrated management.

An Analysis for the Student's Needs of non-face-to-face based Software Lecture in General Education using Text Mining (텍스트 마이닝을 이용한 비대면 소프트웨어 교양과목의 요구사항 분석)

  • Jeong, Hwa-Young
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.105-111
    • /
    • 2022
  • Multiple-choice survey types have been mainly performed to analyze students' needs for online classes. However, in order to analyze the exact needs of students, unstructured data analysis by answer for essay question is required. Big data is applied in various fields because it is possible to analyze unstructured data. This study aims to investigate and analyze what students want subjects or topics for software lecture in general education that process on non-face-to-face online teaching methods. As for the experimental method, keyword analysis and association analysis of big data were performed with unstructured data by giving a subjective questionnaire to students. By the result, we are able to know the keyword what the students want for software lecture, so it will be an important data for planning and designing software lecture of liberal arts in the future as students can grasp the topics they want to learn.

A semi-supervised interpretable machine learning framework for sensor fault detection

  • Martakis, Panagiotis;Movsessian, Artur;Reuland, Yves;Pai, Sai G.S.;Quqa, Said;Cava, David Garcia;Tcherniak, Dmitri;Chatzi, Eleni
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.251-266
    • /
    • 2022
  • Structural Health Monitoring (SHM) of critical infrastructure comprises a major pillar of maintenance management, shielding public safety and economic sustainability. Although SHM is usually associated with data-driven metrics and thresholds, expert judgement is essential, especially in cases where erroneous predictions can bear casualties or substantial economic loss. Considering that visual inspections are time consuming and potentially subjective, artificial-intelligence tools may be leveraged in order to minimize the inspection effort and provide objective outcomes. In this context, timely detection of sensor malfunctioning is crucial in preventing inaccurate assessment and false alarms. The present work introduces a sensor-fault detection and interpretation framework, based on the well-established support-vector machine scheme for anomaly detection, combined with a coalitional game-theory approach. The proposed framework is implemented in two datasets, provided along the 1st International Project Competition for Structural Health Monitoring (IPC-SHM 2020), comprising acceleration and cable-load measurements from two real cable-stayed bridges. The results demonstrate good predictive performance and highlight the potential for seamless adaption of the algorithm to intrinsically different data domains. For the first time, the term "decision trajectories", originating from the field of cognitive sciences, is introduced and applied in the context of SHM. This provides an intuitive and comprehensive illustration of the impact of individual features, along with an elaboration on feature dependencies that drive individual model predictions. Overall, the proposed framework provides an easy-to-train, application-agnostic and interpretable anomaly detector, which can be integrated into the preprocessing part of various SHM and condition-monitoring applications, offering a first screening of the sensor health prior to further analysis.

Lightweight multiple scale-patch dehazing network for real-world hazy image

  • Wang, Juan;Ding, Chang;Wu, Minghu;Liu, Yuanyuan;Chen, Guanhai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4420-4438
    • /
    • 2021
  • Image dehazing is an ill-posed problem which is far from being solved. Traditional image dehazing methods often yield mediocre effects and possess substandard processing speed, while modern deep learning methods perform best only in certain datasets. The haze removal effect when processed by said methods is unsatisfactory, meaning the generalization performance fails to meet the requirements. Concurrently, due to the limited processing speed, most dehazing algorithms cannot be employed in the industry. To alleviate said problems, a lightweight fast dehazing network based on a multiple scale-patch framework (MSP) is proposed in the present paper. Firstly, the multi-scale structure is employed as the backbone network and the multi-patch structure as the supplementary network. Dehazing through a single network causes problems, such as loss of object details and color in some image areas, the multi-patch structure was employed for MSP as an information supplement. In the algorithm image processing module, the image is segmented up and down for processed separately. Secondly, MSP generates a clear dehazing effect and significant robustness when targeting real-world homogeneous and nonhomogeneous hazy maps and different datasets. Compared with existing dehazing methods, MSP demonstrated a fast inference speed and the feasibility of real-time processing. The overall size and model parameters of the entire dehazing model are 20.75M and 6.8M, and the processing time for the single image is 0.026s. Experiments on NTIRE 2018 and NTIRE 2020 demonstrate that MSP can achieve superior performance among the state-of-the-art methods, such as PSNR, SSIM, LPIPS, and individual subjective evaluation.

Peer Role-Play in a College of Korean Medicine to Improve Senior Students' Competencies in Patient Care and Communication: A Case Analysis and Proposal for a Model (한의학 전공학생의 진료 및 의사소통 역량 향상을 위한 동료 역할극 모델제안과 사례분석)

  • Eunbyul Cho;Hyun-Jong Jung;Jungtae Leem
    • The Journal of Korean Medicine
    • /
    • v.43 no.3
    • /
    • pp.49-64
    • /
    • 2022
  • Objectives: Peer role-play (PRP) has been used in health care training simulations because standardized patient training requires considerable time and expense. This study described the implementation of clinical simulation using PRP and examined the effect. Methods: Final year students from a single college of Korean medicine engaged in PRP as part of clinical skills practice. Education tools from clinical practice guidelines were used to structure the PRP. Communication competency was assessed with the Korean Version of the Self-Efficacy Questionnaire (KSE-12). Whether this training helped to achieve graduate outcomes was evaluated on a five-point scale. Results: Fifty-nine students (53.2%) participated in the survey. Among 12 items on the KSE-12, the score for "How certain are you that you are able to successfully listen attentively to the patient?" was the highest. Further, PRP was found to be helpful for self-directed learning, establishment of one's professional identity, and the ability to communicate and manage patients. Three themes ("Benefits of role-play", "The importance of positive feedback", "Limitations and problems of role-play"), 15 categories, and 16 central meanings were derived by categorizing learners' subjective opinions about PRP. Conclusions: Study findings indicate that PRP may contribute to improving communication skills and establishing a professional identity for future Korean medicine doctors. We suggest using PRP in clinical education in colleges of Korean Medicine.

A Comparative Study of Predictive Factors for Hypertension using Logistic Regression Analysis and Decision Tree Analysis

  • SoHyun Kim;SungHyoun Cho
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.2
    • /
    • pp.80-91
    • /
    • 2023
  • Objective: The purpose of this study is to identify factors that affect the incidence of hypertension using logistic regression and decision tree analysis, and to build and compare predictive models. Design: Secondary data analysis study Methods: We analyzed 9,859 subjects from the Korean health panel annual 2019 data provided by the Korea Institute for Health and Social Affairs and National Health Insurance Service. Frequency analysis, chi-square test, binary logistic regression, and decision tree analysis were performed on the data. Results: In logistic regression analysis, those who were 60 years of age or older (Odds ratio, OR=68.801, p<0.001), those who were divorced/widowhood/separated (OR=1.377, p<0.001), those who graduated from middle school or younger (OR=1, reference), those who did not walk at all (OR=1, reference), those who were obese (OR=5.109, p<0.001), and those who had poor subjective health status (OR=2.163, p<0.001) were more likely to develop hypertension. In the decision tree, those over 60 years of age, overweight or obese, and those who graduated from middle school or younger had the highest probability of developing hypertension at 83.3%. Logistic regression analysis showed a specificity of 85.3% and sensitivity of 47.9%; while decision tree analysis showed a specificity of 81.9% and sensitivity of 52.9%. In classification accuracy, logistic regression and decision tree analysis showed 73.6% and 72.6% prediction, respectively. Conclusions: Both logistic regression and decision tree analysis were adequate to explain the predictive model. It is thought that both analysis methods can be used as useful data for constructing a predictive model for hypertension.

Application of Mask R-CNN Algorithm to Detect Cracks in Concrete Structure (콘크리트 구조체 균열 탐지에 대한 Mask R-CNN 알고리즘 적용성 평가)

  • Bae, Byongkyu;Choi, Yongjin;Yun, Kangho;Ahn, Jaehun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.33-39
    • /
    • 2024
  • Inspecting cracks to determine a structure's condition is crucial for accurate safety diagnosis. However, visual crack inspection methods can be subjective and are dependent on field conditions, thereby resulting in low reliability. To address this issue, this study automates the detection of concrete cracks in image data using ResNet, FPN, and the Mask R-CNN components as the backbone, neck, and head of a convolutional neural network. The performance of the proposed model is analyzed using the intersection over the union (IoU). The experimental dataset contained 1,203 images divided into training (70%), validation (20%), and testing (10%) sets. The model achieved an IoU value of 95.83% for testing, and there were no cases where the crack was not detected. These findings demonstrate that the proposed model realized highly accurate detection of concrete cracks in image data.

Defect Detection and Cause Analysis for Copper Filter Dryer Quality Assurance (Copper Filter Dryer 품질보증을 위한 결함 검출 및 원인 분석)

  • SeokMin Oh;JinJe Park;Van-Quan Dao;ByungHo Jang;HeungJae Kim;ChangSoon Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.107-116
    • /
    • 2024
  • Copper Filter Dryer (CFD) are responsible for removing impurities from the circulation of refrigerant in refrigeration and cooling systems to maintain clean refrigerant, and defects in CFD can lead to product defects such as leakage and reduced lifespan in refrigeration and cooling systems, making quality assurance essential. In the quality inspection stage, human inspection and defect judgment methods are traditionally used, but these methods are subjective and inaccurate. In this paper, YOLOv7 object detection algorithm was used to detect defects occurring during the CFD Shaft pipe and welding process to replace the existing quality inspection, and the detection performance of F1-Score 0.954 and 0.895 was confirmed. In addition, the cause of defects occurring during the welding process was analyzed by analyzing the sensor data corresponding to the Timestamp of the defect image. This paper proposes a method for manufacturing quality assurance and improvement by detecting defects that occur during CFD process and analyzing their causes.

Harnessing the Power of Voice: A Deep Neural Network Model for Alzheimer's Disease Detection

  • Chan-Young Park;Minsoo Kim;YongSoo Shim;Nayoung Ryoo;Hyunjoo Choi;Ho Tae Jeong;Gihyun Yun;Hunboc Lee;Hyungryul Kim;SangYun Kim;Young Chul Youn
    • Dementia and Neurocognitive Disorders
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Background and Purpose: Voice, reflecting cerebral functions, holds potential for analyzing and understanding brain function, especially in the context of cognitive impairment (CI) and Alzheimer's disease (AD). This study used voice data to distinguish between normal cognition and CI or Alzheimer's disease dementia (ADD). Methods: This study enrolled 3 groups of subjects: 1) 52 subjects with subjective cognitive decline; 2) 110 subjects with mild CI; and 3) 59 subjects with ADD. Voice features were extracted using Mel-frequency cepstral coefficients and Chroma. Results: A deep neural network (DNN) model showed promising performance, with an accuracy of roughly 81% in 10 trials in predicting ADD, which increased to an average value of about 82.0%±1.6% when evaluated against unseen test dataset. Conclusions: Although results did not demonstrate the level of accuracy necessary for a definitive clinical tool, they provided a compelling proof-of-concept for the potential use of voice data in cognitive status assessment. DNN algorithms using voice offer a promising approach to early detection of AD. They could improve the accuracy and accessibility of diagnosis, ultimately leading to better outcomes for patients.