• 제목/요약/키워드: Subgrid model

검색결과 74건 처리시간 0.022초

난류 경계층에 놓인 공동 내부유동에 관한 수치해석적 연구 (Numerical Study on Turbulent Flow Inside a Channel with an Extended Chamber)

  • 이영태;임희창
    • 대한기계학회논문집B
    • /
    • 제34권10호
    • /
    • pp.925-931
    • /
    • 2010
  • 본 논문은 공동 주위 난류유동특성을 LES 기법으로 수치해석을 수행하여 알아보았다. 본 연구에 적용된 레이놀즈수는 공동 깊이만큼의 높이 h 에서의 유속을 기준으로 $1.0{\times}10^5$ 이며 3 차원 공동에서의 유동특성을 알아보았다. 적절한 비압축성 Filtered Navier-Stokes 방정식을 적용하기 위해, 계산격자를 공동 표면 근처에는 조밀하게 멀어질수록 성기게 생성하였으며, 이는 계산시간을 단축시키며 빠른 수렴을 도와준다. 또한, Boussinesq 가설을 subgrid-scale 난류모델에 적용하였고, Subgrid-scale 난류점성을 얻기 위해 smagorinsky-Lilly SGS 모델을 적용하였으며, 그 때의 CFL 수는 1.0 이다. 또한, 본 논문은 서로 다른 4 가지 형상의 공동의 및 입구조건의 변화에 따른 유동 특성도 함께 연구되었다.

종관 환경 변화에 따른 아격자 산악모수화와 고해상도 지면 자료가 WRF 모델의 바람장 모의에 미치는 영향 (Effects of the Subgrid-Scale Orography Parameterization and High-Resolution Surface Data on the Simulated Wind Fields in the WRF Model under the Different Synoptic-Scale Environment)

  • 이현지;김기병;이준홍;신혜윰;장은철;임종명;임교선
    • 대기
    • /
    • 제32권2호
    • /
    • pp.103-118
    • /
    • 2022
  • This study evaluates the simulated meteorological fields with a particular focus on the low-level wind, which plays an important role in air pollutants dispersion, under the varying synoptic environment. Additionally, the effects of subgrid-scale orography parameterization and improved topography/land-use data on the simulated low-level wind is investigated. The WRF model version 4.1.3 is utilized to simulate two cases that were affected by different synoptic environments. One case from 2 to 6 April 2012 presents the substantial low-level wind speed over the Korean peninsula where the synoptic environment is characterized by the baroclinic instability. The other case from 14 to 18 April 2012 presents the relatively weak low-level wind speed and distinct diurnal cycle of low-level meteorological fields. The control simulations of both cases represent the systematic overestimation of the low-level wind speed. The positive bias for the case under the baroclinic instability is considerably alleviated by applying the subgrid-scale orography parameterization. However, the improvement of wind speed for the other case showing relatively weak low-level wind speed is not significant. Applying the high-resolution topography and land-use data also improves the simulated wind speed by reducing the positive bias. Our analysis shows that the increased roughness length in the high-resolution topography and land-use data is the key contributor that reduces the simulated wind speed. The simulated wind direction is also improved with the high-resolution data for both cases. Overall, our study indicates that wind forecasts can be improved through the application of the subgrid-scale orography parameterization and high-resolution topography/land-use data.

확장형 Boussinesq FEM model의 수치진동오차 개선 (Wiggle-free Finite Element Model for extended Boussinesq equations)

  • 우승범;최영광
    • 한국해안·해양공학회논문집
    • /
    • 제22권1호
    • /
    • pp.47-57
    • /
    • 2010
  • Woo and Liu (2004)의 확장형 Boussinesq FEM 수치모형에서 한계점으로 지적되었던 수치진동현상과 계산 효율성이 크게 개선되었다. 수치진동을 해결하기 위해 subgrid scale stabilization method를 사용하였고, 계산효율성을 높이기 위해서 Hessian 연산자를 도입하였으며, 유속벡터에 대한 행렬 구성을 하나의 행렬로 구성하였다. 또한 추가변수에 대한 행렬은 mass lumping technique을 사용하여 대각행렬로 구성하였다. Vincent and Briggs(1989)의 파랑 굴절 및 회절에 대한 수치실험 결과 수치진동현상이 확연히 줄어 들은 것을 관찰할 수 있었으며, 수리실험 결과와도 상당히 일치하는 결과를 보였다. 이전 모형에 비해 약 10배의 계산소요시간이 줄어 향후 항만부진동이나 퇴적물 이동과 같은 현실적인 문제에 적용이 가능할 것으로 기대된다.

큰 에디 모사 기법을 이용한 초기 천이 경계층 유동 및 방사 소음 해석 (A study on the early stage of a transitional boundary layer and far field noise using a large eddy simulation technique)

  • 최명렬;최해천;강신형
    • 대한기계학회논문집B
    • /
    • 제21권6호
    • /
    • pp.779-792
    • /
    • 1997
  • Flow characteristics are numerically investigated when a packet of waves consisting of a Tollmien-Schlichting wave and a pair of Squire waves evolves in a flat-plate laminar boundary layer using a large eddy simulation with a dynamic subgrid-scale model. Characteristics of early stage transitional boundary layer flow such as the .LAMBDA. vortex, variation of the skin friction and backscatter are predicted. Smagorinsky constants and the eddy viscosity obtained from the dynamic subgrid-scale model significantly change as the flow evolves. Far Field noise radiated from the transitional boundary layer shows the dipole and quadrupole characteristics owing to the wall shear stress and the Reynolds stresses, respectively.

비정렬 격자를 이용한 LES 기법 개발 (DEVELOPMENT OF A LARGE EDDY SIMULATION METHOD ON UNSTRUCTURED MESHES)

  • 이경세;백제현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.106-109
    • /
    • 2006
  • A large eddy simulation with explicit filters on unstructured mesh is presented. Two explicit filters are adopted for reducing the aliasing error of the nonlinear convective term and measuring the level of subgrid scale velocity fluctuation, respectively. The developed subgrid scale model is basically eddy viscosity model which depends on the explicitly filtered fields and needs no additional ad hoc wall treatment such as van Driest damping function. As a validation problem, the flows around a sphere at several Reynolds numbers, including laminar and turbulent regimes, are calculated and compared to experimental data and numerical results in the literature.

  • PDF

비정렬 격자를 이용한 구 주위의 큰에디 모사 (LARGE EDDY SIMULATION OF THE FLOW AROUND A SPHERE WITH UNSTRUCTURED MESH)

  • 이경세;백제현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.41-44
    • /
    • 2007
  • A large eddy simulation method with unstructured mesh is presented. Two explicit filtering procedures are adopted for reducing the aliasing error of the nonlinear convective term and measuring the level of subgrid scale velocity fluctuation, respectively. The developed subgrid scale model is basically an eddy viscosity model which depends on both local velocity fluctuation level and local grid scale. As a validation problem, the flows around a sphere of several Reynolds numbers are simulated and some characteristic quantities are compared to experimental data and numerical results in the literature.

  • PDF

Development of a Dynamic Downscaling Method for Use in Short-Range Atmospheric Dispersion Modeling Near Nuclear Power Plants

  • Sang-Hyun Lee;Su-Bin Oh;Chun-Ji Kim;Chun-Sil Jin;Hyun-Ha Lee
    • Journal of Radiation Protection and Research
    • /
    • 제48권1호
    • /
    • pp.28-43
    • /
    • 2023
  • Background: High-fidelity meteorological data is a prerequisite for the realistic simulation of atmospheric dispersion of radioactive materials near nuclear power plants (NPPs). However, many meteorological models frequently overestimate near-surface wind speeds, failing to represent local meteorological conditions near NPPs. This study presents a new high-resolution (approximately 1 km) meteorological downscaling method for modeling short-range (< 100 km) atmospheric dispersion of accidental NPP plumes. Materials and Methods: Six considerations from literature reviews have been suggested for a new dynamic downscaling method. The dynamic downscaling method is developed based on the Weather Research and Forecasting (WRF) model version 3.6.1, applying high-resolution land-use and topography data. In addition, a new subgrid-scale topographic drag parameterization has been implemented for a realistic representation of the atmospheric surface-layer momentum transfer. Finally, a year-long simulation for the Kori and Wolsong NPPs, located in southeastern coastal areas, has been made for 2016 and evaluated against operational surface meteorological measurements and the NPPs' on-site weather stations. Results and Discussion: The new dynamic downscaling method can represent multiscale atmospheric motions from the synoptic to the boundary-layer scales and produce three-dimensional local meteorological fields near the NPPs with a 1.2 km grid resolution. Comparing the year-long simulation against the measurements showed a salient improvement in simulating near-surface wind fields by reducing the root mean square error of approximately 1 m/s. Furthermore, the improved wind field simulation led to a better agreement in the Eulerian estimate of the local atmospheric dispersion. The new subgrid-scale topographic drag parameterization was essential for improved performance, suggesting the importance of the subgrid-scale momentum interactions in the atmospheric surface layer. Conclusion: A new dynamic downscaling method has been developed to produce high-resolution local meteorological fields around the Kori and Wolsong NPPs, which can be used in short-range atmospheric dispersion modeling near the NPPs.

난류 파이프 유동에서의 레이놀즈 수 영향: Part I. 평균 유동장 및 저차 난류통계치 (REYNOLDS NUMBER EFFECTS ON TURBULENT PIPE FLOW PART I. MEAN FLOW FIELD AND LOW-ORDER STATISTICS)

  • 강창우;양경수
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.28-38
    • /
    • 2011
  • Large eddy simulation(LES) of fully developed turbulent pipe flow has been performed to investigate the effect of Reynolds number on the flow field at $Re_{\tau}$=180, 395, 590 based on friction velocity and pipe radius. A dynamic subgrid-scale model for the turbulent subgrid-scale stresses was employed to close the governing equations. The mean flow properties, mean velocity profiles and turbulent intensities obtained from the present LES are in good agreement with the previous numerical and experimental results currently available. The Reynolds number effects were observed in the mean velocity profile, root-mean-square of velocity fluctuations, Reynolds shear stress and turbulent viscosity.

난류 파이프 유동에서의 레이놀즈 수 영향: Part II. 순간유동장, 고차 난류통계치 및 난류수지 (REYNOLDS NUMBER EFFECTS ON TURBULENT PIPE FLOW PART II. INSTANTANEOUS FLOW FIELD,HIGHER-ORDER STATISTICS AND TURBULENT BUDGETS)

  • 강창우;양경수
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.100-109
    • /
    • 2011
  • Large eddy simulation(LES) of fully developed turbulent pipe flow has been performed to investigate the effect of Reynolds number on the flow field at $Re_{\tau}$=180, 395, 590 based on friction velocity and pipe radius. A dynamic subgrid-scale model for the turbulent subgrid-scale stresses was employed to close the governing equations. The mean flow properties, mean velocity profiles and turbulent intensities obtained from the present LES are in good agreement with the previous numerical and experimental results currently available. The Reynolds number effects were observed in the higher-order statistics(Skewness and Flatness factor). Furthermore, the budgets of the Reynolds stresses and turbulent kinetic energy were computed and analyzed to elucidate the effect of Reynolds number on the turbulent structures.