• 제목/요약/키워드: Subgraph mining

검색결과 7건 처리시간 0.02초

Mining Highly Reliable Dense Subgraphs from Uncertain Graphs

  • LU, Yihong;HUANG, Ruizhi;HUANG, Decai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.2986-2999
    • /
    • 2019
  • The uncertainties of the uncertain graph make the traditional definition and algorithms on mining dense graph for certain graph not applicable. The subgraph obtained by maximizing expected density from an uncertain graph always has many low edge-probability data, which makes it low reliable and low expected edge density. Based on the concept of ${\beta}$-subgraph, to overcome the low reliability of the densest subgraph, the concept of optimal ${\beta}$-subgraph is proposed. An efficient greedy algorithm is also developed to find the optimal ${\beta}$-subgraph. Simulation experiments of multiple sets of datasets show that the average edge-possibility of optimal ${\beta}$-subgraph is improved by nearly 40%, and the expected edge density reaches 0.9 on average. The parameter ${\beta}$ is scalable and applicable to multiple scenarios.

Efficient Mining of Frequent Subgraph with Connectivity Constraint

  • Moon, Hyun-S.;Lee, Kwang-H.;Lee, Do-Heon
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.267-271
    • /
    • 2005
  • The goal of data mining is to extract new and useful knowledge from large scale datasets. As the amount of available data grows explosively, it became vitally important to develop faster data mining algorithms for various types of data. Recently, an interest in developing data mining algorithms that operate on graphs has been increased. Especially, mining frequent patterns from structured data such as graphs has been concerned by many research groups. A graph is a highly adaptable representation scheme that used in many domains including chemistry, bioinformatics and physics. For example, the chemical structure of a given substance can be modelled by an undirected labelled graph in which each node corresponds to an atom and each edge corresponds to a chemical bond between atoms. Internet can also be modelled as a directed graph in which each node corresponds to an web site and each edge corresponds to a hypertext link between web sites. Notably in bioinformatics area, various kinds of newly discovered data such as gene regulation networks or protein interaction networks could be modelled as graphs. There have been a number of attempts to find useful knowledge from these graph structured data. One of the most powerful analysis tool for graph structured data is frequent subgraph analysis. Recurring patterns in graph data can provide incomparable insights into that graph data. However, to find recurring subgraphs is extremely expensive in computational side. At the core of the problem, there are two computationally challenging problems. 1) Subgraph isomorphism and 2) Enumeration of subgraphs. Problems related to the former are subgraph isomorphism problem (Is graph A contains graph B?) and graph isomorphism problem(Are two graphs A and B the same or not?). Even these simplified versions of the subgraph mining problem are known to be NP-complete or Polymorphism-complete and no polynomial time algorithm has been existed so far. The later is also a difficult problem. We should generate all of 2$^n$ subgraphs if there is no constraint where n is the number of vertices of the input graph. In order to find frequent subgraphs from larger graph database, it is essential to give appropriate constraint to the subgraphs to find. Most of the current approaches are focus on the frequencies of a subgraph: the higher the frequency of a graph is, the more attentions should be given to that graph. Recently, several algorithms which use level by level approaches to find frequent subgraphs have been developed. Some of the recently emerging applications suggest that other constraints such as connectivity also could be useful in mining subgraphs : more strongly connected parts of a graph are more informative. If we restrict the set of subgraphs to mine to more strongly connected parts, its computational complexity could be decreased significantly. In this paper, we present an efficient algorithm to mine frequent subgraphs that are more strongly connected. Experimental study shows that the algorithm is scaling to larger graphs which have more than ten thousand vertices.

  • PDF

그래프마이닝을 활용한 빈발 패턴 탐색에 관한 연구 (A Methodology for Searching Frequent Pattern Using Graph-Mining Technique)

  • 홍준석
    • Journal of Information Technology Applications and Management
    • /
    • 제26권1호
    • /
    • pp.65-75
    • /
    • 2019
  • As the use of semantic web based on XML increases in the field of data management, a lot of studies to extract useful information from the data stored in ontology have been tried based on association rule mining. Ontology data is advantageous in that data can be freely expressed because it has a flexible and scalable structure unlike a conventional database having a predefined structure. On the contrary, it is difficult to find frequent patterns in a uniformized analysis method. The goal of this study is to provide a basis for extracting useful knowledge from ontology by searching for frequently occurring subgraph patterns by applying transaction-based graph mining techniques to ontology schema graph data and instance graph data constituting ontology. In order to overcome the structural limitations of the existing ontology mining, the frequent pattern search methodology in this study uses the methodology used in graph mining to apply the frequent pattern in the graph data structure to the ontology by applying iterative node chunking method. Our suggested methodology will play an important role in knowledge extraction.

그래프 마이닝에서 그래프 동형판단연산의 향상기법 (Improved approach of calculating the same shape in graph mining)

  • 노영상;윤은일;김명준
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권10호
    • /
    • pp.251-258
    • /
    • 2009
  • 그래프마이닝에서 그래프패턴의 동형판단문제는 지수함수적 계산시간을 요구하기 때문에 그래프마이닝의 전체수행시간에서 동형판단 연산이 차지하는 비율이 매우 높다. 그러므로 그래프마이닝 알고리즘은 그래프동형판단을 최대한 효율적으로 할 필요가 있다. 본 논문은 그래프마이닝에서 빠른 수행시간을 보이는 gaston 알고리즘의 동형판단효율성을 증가시켜 수행시간을 평가해 보았으며, 제시한 방법으로 인해 더욱 향상된 성능을 보인다.

BINGO: Biological Interpretation Through Statistically and Graph-theoretically Navigating Gene $Ontology^{TM}$

  • Lee, Sung-Geun;Yang, Jae-Seong;Chung, Il-Kyung;Kim, Yang-Seok
    • Molecular & Cellular Toxicology
    • /
    • 제1권4호
    • /
    • pp.281-283
    • /
    • 2005
  • Extraction of biologically meaningful data and their validation are very important for toxicogenomics study because it deals with huge amount of heterogeneous data. BINGO is an annotation mining tool for biological interpretation of gene groups. Several statistical modeling approaches using Gene Ontology (GO) have been employed in many programs for that purpose. The statistical methodologies are useful in investigating the most significant GO attributes in a gene group, but the coherence of the resultant GO attributes over the entire group is rarely assessed. BINGO complements the statistical methods with graph-theoretic measures using the GO directed acyclic graph (DAG) structure. In addition, BINGO visualizes the consistency of a gene group more intuitively with a group-based GO subgraph. The input group can be any interesting list of genes or gene products regardless of its generation process if the group is built under a functional congruency hypothesis such as gene clusters from DNA microarray analysis.

순환 그래프 마이닝에서 중복된 그래프 패턴의 확장을 피하는 효율적인 기법 (An efficient approach of avoiding extensions of duplicated graph patterns in cyclic graph mining)

  • 노영상;윤은일;편광범;양흥모;이강인;류근호;이경민
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권12호
    • /
    • pp.33-41
    • /
    • 2011
  • 그래프 마이닝에서 복잡한 그래프 구조로 인해, 중복된 확장 연산이 수행되며 이로인해 낮은 효율성을 가지게 된다. 본 논문에서는 순환그래프에서 중복된 그래프 패턴으로의 확장을 최소화하기위해 중복 판단을 효율적으로 하는 그래프 마이닝 알고리즘을 제안한다. 제안하는 기법에서는 순환간선의 우선순위를 고려하여 우선순위가 낮은 간선을 먼저 확장하게 함으로써 중복확장을 줄이도록 하였다. 이 기법의 성능을 평가하기 위해, 알고리즘을 구현하고 그래프 마이닝의 대표 알고리즘인 가스톤 알고리즘과 성능 평가를 하였으며, 제안하는 알고리즘이 복잡한 그래프 구조에서 반복되어 발생하는 연산중 하나인 순환 그래프에서 패턴 확장 시에 필요한 연산을 효율적으로 줄이도록하여 전체 마이닝의 성능이 향상됨을 보인다.

한중 4차산업혁명 기술교류 및 효과에 대한 실증연구: 기업 소셜 네트워크 분석 중심으로 (The Empirical Study on the Effect of Technology Exchanges in the Fourth Industrial Revolution between Korea and China: Focused on the Firm Social Network Analysis)

  • 저우전신;손권상;황윤민;권오병
    • 한국전자거래학회지
    • /
    • 제25권3호
    • /
    • pp.41-61
    • /
    • 2020
  • 중국의 4차 산업혁명 첨단기술 개발 및 사업화 속도가 빠르게 진행되며 효과적인 한중 기업 간 기술교류가 한국의 중장기 산업발전에 더욱 중요해지고 있다. 하지만 아직까지 한중 기업 간 기술교류가 어떻게 진행되는지와 그 효과에 대한 실증 연구가 부족하다. 이에 본 연구는 4차 산업혁명 관련 한중 기술교류 현황 및 효과에 대해 2018년부터 2020년 3월까지 뉴스에 소개된 한중 기업 기술교류 및 협력 기사의 텍스트 마이닝 데이터 기반으로 소셜 네트워크 분석을 진행하고 네트워크 중심성의 성과영향 회귀분석을 진행했다. 분석 결과 국내 전자 대기업들이 대부분 중심성 지표에서 높은 중심성을 보이며 중국 기업 및 기관들과 네트워킹을 활발히 진행하고 있다. 국내 통신사들이 매개 중심성과 부분그래프에서 높은 중심성을 국내 인터넷 서비스 업체와 방송 컨텐츠 업체들이 높은 고유벡터 중심성을 나타냈다. 또한 한국기업보다 중국기업이 높은 매개 중심성을 제조기업보다 서비스기업이 높은 근접 중심성을 보였다. 이러한 네트워크 중심성은 회귀분석결과 기업성과에 긍정적인 영향을 미쳤다. 본 연구는 4차 산업혁명 분야에 집중하여 한중간 협력 현황을 분석한 최초 연구라는 의미가 있으며, 학술적으로 글로벌 기업 협력에 있어 소셜 네트워크 분석 기반 실증 연구 방향을 제시하고 실무적으로 기업이나 정부의 한중 기술 협력 방향 설정에 있어 네트워크 분석 기반 가이드라인을 제시하였다.