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ABSTRACT:

The goal of data mining is to extract new and useful knowl-
edge from large scale datasets. As the amount of available
data grows explosively, it became vitally important to develop
faster data mining algorithms for various types of data.

Recently, an interest in developing data mining algorithms
that operate on graphs has been increased. Especially, min-
ing frequent patterns from structured data such as graphs has
been concerned by many research groups. A graph is a highly
adaptable representation scheme that used in many domains
including chemistry, bioinformatics and physics. For exam-
ple, the chemical structure of a given substance can be mod-
elled by an undirected labelled graph in which each node cor-
responds to an atom and each edge corresponds to a chemical
bond between atoms. Internet can also be modelled as a di-
rected graph in which each node corresponds to an web site
and each edge corresponds to a hypertext link between web
sites. Notably in bioinformatics area, various kinds of newly
discovered data such as gene regulation networks or protein
interaction networks could be modelled as graphs.

There have been a number of attempts to find useful knowl-
edge from these graph structured data. One of the most power-
ful analysis tool for graph structured data is frequent subgraph
analysis. Recurring patterns in graph data can provide incom-
parable insights into that graph data.

However, to find recurring subgraphs is extremely expen-
sive in computational side. At the core of the problem, there
are two computationally challenging problems. 1) Subgraph
isomorphism and 2) Enumeration of subgraphs. Problems
related to the former are subgraph isomorphism problem (Is
graph A contains graph B?) and graph isomorphism problem
(Are two graphs A and B the same or not?). Even these simpli-
fied versions of the subgraph mining problem are known to be
NP-complete or Polymorphism-complete and no polynomial
time algorithm has been existed so far. The later is also a diffi-
cult problem. We should generate all of 2" subgraphs if there
is no constraint where n is the number of vertices of the input
graph. In order to find frequent subgraphs from larger graph
database, it is essential to give appropriate constraint to the
subgraphs to find. Most of the current approaches are focus on
the frequencies of a subgraph: the higher the frequency of a
graph is, the more attentions should be given to that graph. Re-
cently, several algorithms which use level by level approaches
to find frequent subgraphs have been developed.

Some of the recently emerging applications suggest that
other constraints such as connectivity also could be useful in

mining subgraphs : more strongly connected parts of a graph
are more informative. If we restrict the set of subgraphs to
mine to more strongly connected parts, its computational com-
plexity could be decreased significantly.

In this paper, we present an efficient algorithm to mine fre-
quent subgraphs that are more strongly connected. Exper-
imental study shows that the algorithm is scaling to larger
graphs which have more than ten thousand vertices.

1 INTRODUCTION

The goal of data mining is to extract new and useful knowl-
edge from large scale datasets. As the amount of available
data grows explosively, it became vitally important to develop
faster data mining algorithms for various types of data.

Recently, an interest in developing data mining algorithms
that operate on graphs has been increased. Especially, min-
ing frequent patterns from structured data such as graphs has
been concerned by many research groups. A graph is a highly
adaptable representation scheme that used in many domains
including chemistry, bioinformatics and physics. For exam-
ple, the chemical structure of a given substance can be mod-
elled by an undirected labelled graph in which each node cor-
responds to an atom and each edge corresponds to a chemical
bond between atoms. Internet can also be modelled as a di-
rected graph in which each node corresponds to an web site
and each edge corresponds to a hypertext link between web
sites. Notably in bioinformatics area, various kinds of newly
discovered data such as gene regulation networks or protein
interaction networks could be modelled as graphs.

There have been a number of attempts to find useful knowl-
edge from these graph structured data. One of the most power-
ful analysis tool for graph structured data is frequent subgraph
analysis. Recurring patterns in graph data can provide incom-
parable insights into that graph data.

However, to find recurring subgraphs is extremely expen-
sive in computational side. At the core of the problem, there
are two computationally challenging problems. 1) Subgraph
isomorphism and 2) Enumeration of subgraphs. Problems
related to the former are subgraph isomorphism problem (Is
graph A contains graph B?) and graph isomorphism problem
(Are two graphs A and B the same or not?). Even these simpli-
fied versions of the subgraph mining problem are known to be
NP-complete or Polymorphism-complete and no polynomial
time algorithm has been existed so far. The later is also a diffi-
cult problem. We should generate all of 2" subgraphs if there
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is no constraint where n is the number of vertices of the input
graph. In order to find frequent subgraphs from larger graph
database, it is essential to give appropriate constraint to the
subgraphs to find. Most of the current approaches are focus on
the frequencies of a subgraph: the higher the frequency of a
graph is, the more attentions should be given to that graph. Re-
cently, several algorithms which use level by level approaches
to find frequent subgraphs have been developed.

Some of the recently emerging applications suggest that
other constraints such as connectivity also could be useful in
mining subgraphs : more strongly connected parts of a graph
are more informative. If we restrict the set of subgraphs to
mine to more strongly connected parts, its computational com-
plexity could be decreased significantly. This is the basic mo-
tivation for this work.

1.1 Related Works

Theoretical foundation of graph isomorphism problem was
established in 1970s. Given two graphs Gy(Vy,E,) and
Gy(Vy,Ey), the subgraph isomorphism problem is to find the
subgraph of Gy, G(Vix,Esc) such that G, is identical to
G, if such a subgraph exist. Ullman showed that the prob-
lem is NP-complete and proposed a brute-force algorithm for
the problem [4]. More simplified version of this problem is
graph isomorphism problem and canonical labelling prob-
lem. Graph isomorphism problem is to determine whether
two graphs G (Vx, Ex) and G(V}, Ey) are equivalent or not. To
find canonical labelling is labelling of vertices for a graph such
than two graphs have the same canonical labelling if and only
if two graph are isomorphic to each other. These two prob-
lems are known to be equivalent and neither NP-completeness
proof nor polynomial time algorithm has been presented for
the problem [5].

Recently, several subgraph mining algorithms have been
presented for varied class of problems. Subgraph mining
problems can be classified into two major categories accord-
ing to the input graph setting : the single-graph setting and
the graph transaction setting. In the single-graph setting, in-
put is a large single graph and the frequency of a subgraph is
how many times does it occur in the single graph. Whereas in
the graph transaction setting, input is a set of relatively small
graphs and the frequency of a subgraph is how many input
graphs have the subgraph.

Although a number of algorithms have been developed for
both of those settings, Few approaches focus on the connectiv-
ity of the target subgraphs to mine. Several applications of the
frequent subgraph mining problem have reported that connec-
tivity as well as frequency gives important information about
the input graph.

1.2 Our Contributions

In this paper, we present an efficient algorithm for mining sub-
graphs with higher connectivity. Most of current algorithms
focus on connected subgraphs. However in some applica-
tions, we are interested in mining more strongly connected
subgraphs although their frequencies are not as high as other
subgraphs. Connectivity of a graph, the minimum number of
vertices to partition the graph, is a good measure to determine

whether a graph 1s strongly conneciea or not. Ut CORNECUvILy
related problems such as k-connected minimum spanning sub-
graph are often NP-complete for general k with greater than 2.
Thus, we focus on biconnected graphs whose properties are
well known.

Although there are several algorithms for subgraph mining,
the problem considered in this paper is different from previous
approaches in following points. First, a large single graph is
given as input whereas many small graphs are given in most of
previous approaches [10, 12, 13]. Second, we do not summa-
rize or contract the input graph which result in loss of informa-
tion or incompleteness [7, 8]. Third, we do not restrict target
graphs to vertex-disjoint embeddings [6]. Fourth, our algo-
rithm assume that the input graph is unlabeled or have only
a few kinds of labels. Current approaches assume that ver-
tices and edges are well-labeled and it greatly reduces com-
putational complexity of the problem [9, 11]. Fifth, current
approaches do not consider any topological characteristics of
subgraphs to mine.

2 Background

A graph G = (V, E) is made of two sets, the set of vertices V
and the set of edges E. Each edge itself is a pair of vertices.
Throughout this paper we assume that the graph is unlabelled
and undirected. That is, all vertices and edges have the same
label. Given a graph G = (V,E), a graph G, = (V,,E;) is a
subgraph if and only if V; C V and E; C E. An induced sub-
graph is a subset of the vertices of a graph G together with any
edges whose endpoints are both in this subset. Two graphs
Gi = (Vi,E1) and G; = (V», Ez) are isomorphic if they are
topologically identical to each other.

A graph is connected if there is a path between every pair
of vertices in the graph. A graph is biconnected if there are
at least two paths between every pair of vertices in the graph.
A cycle graph is a graph on n nodes containing a single cycle
through all nodes. A path graph is a tree with two nodes of
vertex degree 1, and the other nodes of vertex degree 2. In
the rest of the paper, we will refer a subgraph of a graph G to
an induced subgraph of G. Similarly, A cycle graph of G is
an induced cycle subgraph of G and a path graph of G is an
induced path subgraph of G if no otherwise specified. A path
graph between u and v in G is a path graph of G where u and
vy are two vertices with degree 1.

A joint graph of two graphs G; = (V1,E) and G, =
(Va,E2), G1UGa, is a graph with a vertex set V; UV, and an
edge set E1 UE,.

3 Mining Biconnected Frequent Subgraphs

In designing an algorithm for efficient mining of biconnected
subgraphs, we focus on the fact that a biconnected graph can
be obtained by joining several cycle graphs which can be rel-
atively easily enumerated. Biconnected Frequent Subgraph
Mining (BFSM) algorithm consist of following steps. First,
for a given graph, we enumerate every path graph within size
k/2. Second, joining two path graphs with the same ends, we
get a get of cycle graphs in G. This set is the initial set of
biconnected subgraphs. Third, joining two biconnected sub-
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graph, we enumerate other biconnected subgraphs until no
more join operation is available. The overview of the BFSM
algorithm is described in Algorithm 3.

Algorithm 1 BFSM (G, n)
Require: G is an input graph and n is the maximum size of
subgraph to find.
Ensure: B is the set of all biconnected subgraphs of G
1: C + CycleGraph(G,n)
2: B «— BiGraph(C,n)

3.1 Enumeration of Cycle Graphs

Cycle graph C,, is a graph on n nodes containing a single cycle
through all nodes. For a given graph G, every induced cycle
graph in G can be enumerated by joining simple backtrack-
ing algorithm. The algorithm begin with an arbitrary starting
vertex in G.

Algorithm 2 CycleGraph (G = (V,E),n)
Ensure: Cis a set of all cycle graphs in G within size n
L C—90
2: for all u,vsuchthatu,veV do
3:  Let P(u,v) be the set of all path graphs between u,v
within size n/2

4. forall Gy =(V1,E1),Gy = (Va, E) such that Gy, G, €
P(u,v) do

5 if ViuV, ={u,v} then

6 C=CU{G1UG»}

7 end if

8: end for

9: end for

3.2 Enumeration of Biconnected Graphs

In this section, we will propose an algorithm that enumerates
all biconnected subgraphs of an input graph G. The algorithm
begins with the set of all induced cycle graphs of G. The idea
is that by joining two induced biconnected subgraphs, we get
a new induced biconnected subgraph. The algorithm is de-
scribed in Algorithm 3.2.

3.3 Correctness

In this section, correctness of Algorithm 3 will be shown. We
will prove that the proposed algorithm enumerates all induced
biconnected subgraphs of G within size n by showing follow-
ing two. First, joining two induced biconnected subgraphs of
G as described in line 6 and 7 in Algorithm 3.2, we always get
a induced biconnected subgraph. Second, any induced bicon-
nected subgraph of G can be constructed by a join operation
of induced cycle graphs in G.

Lemma 1. Let G; = (V1,E}) and G = (Va, E,) be two bicon-
nected subgraphs of G. If [ViUVs| > 1 then G1UG; is also a
biconnected subgraph of G.

Algorithm 3 BiGraph (C,n)
Require: Cis a set of all cycle graphs in G within size n
Ensure: B is a set of all biconnected graphs in G within size
n

1: B—0

2 T—C

3: while T #0 do

4. Let G; = (V,E;) be an element of T

5. forall G, = (Vp,Ep) suchthat G, € B do

6: if [ViNnVy|>1,|GUG <n,and GUG, ¢ B,T
then

7: T —TU{G, UG}

8: end if

9:  end for

10 T«T—{G}
11:  B—BU{G}
12: end while

G, . G,
Figure 1: For any u,v(u € V},v € V,), there are two vertex
disjoint paths between u and v. One is through j; (solid arrow)
and the other is through j, (dashed arrow).

Proof : Since G; and G, are biconnected, for all vertex
pairs (u,v) in G|, there are always more than two paths be-
tween u and v and the same holds for G,. Thus, it will be
shown that for any vertex pairs (u,v) such that u € V| and
v € V,, there are always more than two paths. Let j; and
J2 be two vertices in G| N G,. Since G is biconnected, for
any vertex u(u € Vi), there is a cycle including u, j1, j» in Gy.
Similarly, for any vertex v(v € V3), there is a cycle including
v, j1, j2 in Ga. Thus, for any u,v(u € V1,v € Vo) , pathu-v; v
and path u-v; - v are two vertex disjoint paths from u to v. (See
Figure 1) Therefore a graph G; U G, is biconnected.

Lemma 2. Let B = (Vy,E}p) be a biconnected subgraph of a
graph G. Then there always exist a set of cycle subgraph of G
,{C1,C2,+-+,Cp} such that B=U;_, Cy.

Proof : It will be proven by showing that for any edge in
B, there is a induced cycle subgraph of G containing that edge.
Let e = (u,v) € Ej be an edge in B. Since B is biconnected,
B’ = (Vy,Ep — {(u,v)} is connected and there exists a shortest
pathbetween uand vin B’. Let u-xy -x3 - - - X,y - v be the shortest
path between « and v in B’. Then an induced subgraph of G by
a vertex set {u,v,x1,x2,-+-,X,} is an induced cycle subgraph
of G.

Corollary 1. Algorithm 3 enumerates all biconnected sub-
graphs of an input graph G.
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Transformation of a graph into a canonical form

Vector representation of the canonical form
[ 5] 00011 | 1-2, 1-3, 1-4, 2-3, 2-5, 3-4, 4-5 |

Figure 2: Example of transformation of a graph into the
canonical form. The labels on the vertices are labeling of the
input and the digits above the vertices are canonical labelings.
A vector representation of the canonical form was shown be-
low.

3.4 Frequency Counting and Frequency Con-
straint

In order to count frequencies of subgraphs, we should com-
pare structures of subgraphs. Comparing the structures of two
graphs is a graph isomorphism problem. Solving this prob-
lem involves finding a homomorphism function h, if it exists.
For two graphs Gy = (V1,E1) and G2 = (V», E2), a homomor-
phism function / : V| — V; is a bijection mapping (both a one-
to-one and an onto function) that satisfies the following condi-
tion: (v,w) € E; ifandonlyif (h(v),h(w)) € E>. We used
canonical labelling instead of finding homomorphism function
since it is more efficient for our purpose. Canonical labelling
of a graph is a permutation of the vertices of the graph which
guarantee that canonically relabelled forms of two graphs are
the same if and only if they are isomorphic to each other. Even
though it requires sub-exponential time in the worst case, the
algorithm devised by B. McKay is efficient for addressing the
problem of canonical labelling [5].

In the problem of frequent subgraph detection, we have a
set of candidate frequent subgraphs. For each enumerated
subgraph, we have to determine which of the candidates is
isomorphic to the generated subgraph. We use a hash table
for this process. We store canonically relabeled graphs in a
hash table instead of the graphs themselves. Once a canoni-
cal labeling of a graph is found, we can represent the graph
as a vector of integers. The vector representation of a graph
includes following information.

e The number of the vertices of the graph.
e The labels of the vertices in canonical order.

e Sorted list of the edges in the canonical form.

Figure 2 shows how a graph is represented as a vector form.
The first part of the vector representation is the number of ver-
tices (in this example, five). The second part of the vector is
the list of colors of the vertices. In the example, 0 means light
vertices while 1 means dark vertices. The third part of the vec-
tor consists of all edges in the canonical form. For example,

A Given Graph

o g 0 W Step 2 : Get & vactor represantat:on
— ‘Z' 7 ==> 5] oor1 | 1-2.1-3 14 2-3.2-5.3-4. 45 | =
ling Rk

Step ) Findits -
ccccccc ! 18Deli

Hash table of vector representations

of the set of subgraphs
5 | 00011 1-2.1-3.1-4, 16, 2-3, 2-4. 3-5. 4-5
~ 4 | oont 1-2.1-3,2-4,3-4
e | Loon 1-2.1-3, 1-4. 2-3, 2-4. 3-4
A -
E E & E _‘_E’ z !£

5 | 00011 | 1-2,1-3.1-4. 2~4.2-5, 3-4, 3-5
The set of candidate subgraphs

5 ) 00039 1 1-2.1-3.1-4.2-3, 2-5.3-4.4-5 <

Step 3 : Find the subgraph witn
the same vector representation

Figure 3: Determination of the isomorphic graph for a given
graph. The digits on the vertices are canonical labeling of the
graphs.

1-2 means that there is an edge between vertex 1 and vertex 2
where 1 and 2 are canonical labels.

For efficient implementation, we built a hash table of vec-
tor representations of candidate frequent subgraphs. The steps
are: 1) Find canonical labelling of the given graph. 2) Get
a vector representation. 3) Find the candidate subgraph iso-
morphic to the given graph. 4) If found, increase the counter.
Otherwise, insert the given graph to the set of candidate fre-
quent subgraphs. The overall procedure is described in Figure
3.

4 Experiment

We performed our experimental study using a single proces-
sor of a 2GHz Pentium PC with 1GB memory running Linux.
The presented algorithm was compiled using g++ with O4 op-
timization level. We applied our algorithm to synthetically
generated graphs. Running time of the algorithm is mainly af-
fected by three factors: size of the input graph, density of the
input graph and the size of the subgraphs to mine. In this sec-
tion, we’ll show how these factors affect on the running time
of the algorithm.

4.1 Random Graph

We generated random graphs by controlling two parameters.
The number of vertices in the graph, and the density of the
graph. The density of a graph is a measure to determine
how densely vertices are interconnected and represented by
logyy||E| where |V| is the number of vertices and |E| is the
number of edges. The maximum value of the density is 2 since
a graph has at most |V ||V — 1| edges. In mining frequent sub-
graphs we assume that a target graph is very sparse and its
density is often less than 1.1. The result shows that all of bi-
connected subgraphs within a certain size can be enumerated
in reasonable time bound by the proposed algorithm.

5 Conclusion

In this paper we presented an algorithm called BFSM to find
biconnected frequent subgraphs from a large single unlabeled
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;00 10000 15000 70000 25000

time for in-
density

(@) Run time for input
graph size (d = 1.05,k = 6)

(b) Run

put graph
(n = 10000,k = 6)

Figure 4: Performance of the algorithm for various complexity
of random input graph. The result shows scalability of the
algorithm for input graph size or input graph density.

graph and evaluated its efficiency and scalability through ex-
periments using randomly generated graphs with different size
and density. Our results showed that BESM is highly scalable
and can operate on very large graph with a few labels.

However, as the size of target subgraph to mine grows, its
computational cost grows exponentially. Currently, subgraphs
whose size is less than 10 can be enumerated and counted in
reasonable time bound. Mining of larger subgraphs with lower
frequency still remains an open problem.

5.1 Citations and References

References should appear in a separate section at the end of
the paper, double-spaced, with items referred to by numerals
in square brackets [1]. References must be complete and in
the following style:

e Style for papers: Author, first initials followed by last
name, title in quotations, periodical, volume, page num-
bers, month, year [2].

e Style for books: Author, title. Publisher, Location, chap-
ter, and page numbers (if desired) [3].
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