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Abstract 
 

The uncertainties of the uncertain graph make the traditional definition and algorithms on 
mining dense graph for certain graph not applicable. The subgraph obtained by maximizing 
expected density from an uncertain graph always has many low edge-probability data, which 
makes it low reliable and low expected edge density. Based on the concept of β-subgraph, to 
overcome the low reliability of the densest subgraph, the concept of optimal β-subgraph is 
proposed. An efficient greedy algorithm is also developed to find the optimal β-subgraph. 
Simulation experiments of multiple sets of datasets show that the average edge-possibility of 
optimal β-subgraph is improved by nearly 40%, and the expected edge density reaches 0.9 on 
average. The parameter β is scalable and applicable to multiple scenarios. 
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1. Introduction 

In recent years, many data mining topics have focused on the problem of mining dense 

subgraphs from a large graph. A dense subgraph refers to a relatively dense internal sub-area 
in a graph that is widely used in community-search in social networks [1], detection of DNA 
sequence structure [2], and identification of real-time reporting information in news [3]. 

Finding the densest subgraph is an important graph-mining task with many applications [4]. 
Given a graph G=(V，E), the degree density is defined as |E|/|V|. The densest-subgraph 
problem is to find a subset of vertices S⊆  V that maximizes the degree density. 

Due to experimental errors, noise and other reasons, uncertainty has been recognized to be 
intrinsic in graph data. This graph is called an uncertain graph [5]. A protein-protein 
interaction network (hereinafter referred to as a protein network) is a typical uncertain graph, 
as shown in Fig. 1. The vertex represents the protein molecule, the edge represents the 
interaction relationship between the protein molecules, and the edge-probability represents the 
credibility of the interaction [6], and its value ranges from 0 to 1. Because of the interference 
of many factors in protein experiments, proteins with no direct interaction may be detected by 
mistake, resulting in false positives. Therefore, credibility is used to measure the possibility of 
true protein interaction. 

 
Fig. 1. PPI Network 

 
The dense subgraphs in the protein network often correspond to protein complexes [7], that 

is, multiple proteins are combined by interaction for a specific function. For example, the 
Fanconi protein complex [8] is involved in the DNA damage repair process. Therefore, mining 
dense subgraphs in uncertain graphs is of great significance for protein complex recognition 
and prediction of unknown protein complexes. 

In the study of mining dense subgraphs in an uncertain graph, the maximal clique is used to 
describe the dense subgraph on the uncertain graph in [9], and the concept of maximal clique 
probability is proposed based on the uncertainty semantics. Then, an optimized 
branch-and-bound algorithm, which adopts a new searching strategy, is presented to find top-k 
maximal cliques. The algorithm in [9] is extended in [10]. Taking advantage of parallelism, a 
decomposition-based algorithm is proposed to solve the problem on large uncertain graphs. 
However, the maximal clique requires that any two vertices in the subgraph connected, this 
definition is too strict to fully reflect the dense subgraph in the real graphs. 

Zou et al. [11] first defined the expected density of an uncertain graph and formalized the 
problem of obtaining the densest subgraph in an uncertain graph. The dense subgraphs found 
in this way have certain defects. For example, if A and B in Fig. 2 are two uncertain subgraphs 
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of an uncertain graph, their expected density is 0.7, and it is impossible to compare these two 
subgraphs based on the expected density. 

In [12], the concept of uncertain graph reliability and reliable subgraphs is introduced, and a 
sampling-based algorithm is proposed to mine subgraphs with high reliability in uncertain 
graphs. The reliability of uncertain graphs measures the reliability of a subgraph. Compared 
with A and B in Fig. 2, B’ reliability is lower because there are lot of low probability edges in 
B. Hence, reliable subgraphs are more focused on reliability, and many highly reliable 
subgraphs are not dense. 

To overcome the above weakness of uncertain dense subgraphs that cannot balance 
reliability and density, this paper introduces the concepts of β-subgraph and optimal 
β-subgraph, and proposes a greedy approximation algorithm to find the optimal β-subgraph. 
At the same time, we proved that the surplus average degree of the solution obtained by the 
algorithm is at least ½ of the surplus average degree of the optimal β-subgraph. The 
experimental results of set of datasets show that, compared with the densest subgraph, the 
reliability and the expected edge density are significantly improved, and the dense subgraph is 
extended well by the parameter β. Thus, the algorithm has broad practical applications. 
 

 
Fig. 2. Two Uncertain Subgraphs 

2. Related Work 
The problem of determining dense subgraphs on graphs has recently been extensively studied, 
and various definitions of dense subgraphs have been proposed. Given a graph model G=(V, E) 
and a vertex subset S⊆V, GS=(S,E(S)) is a induced subgraph of G for S. Edge density is defined 
as edge den(S)=|E(S)|/( |S| 

2 ). The subgraph with the maximum edge density of 1 is called a clique 
and the clique with the most vertices of the graph is the maximal clique [13]. The maximal 
clique is regarded as a dense area in the graph. However, the problem of the maximal clique is 
an NP-hard problem, and many graphs have no clique. Therefore, the quasi-clique is proposed 
in [14] to avoid the NP-hard. 

The density of the graph was initiated by Goldberg [4], it is defined as den(S)= |E(S)|/|S|. 
The maximum density subgraph problem (DS-Problem) is to find a sub-graph with the highest 
density in a G. An algorithm to obtain the approximate solution of the maximum density 
subgraph is also proposed by using the maximum flow minimum cut theorem in [4]. A greedy 
algorithm based on the maximum density subgraph is suggested  in [15] to solve the maximum 
density subgraph problem. In [16], the maximum density problem has been further extended 
by limiting the size of the subgraph. However, it is an NP-hard problem [17]. MapReduce [18], 
real-time evolving graphs [19] and other techniques are also applied to study the maximum 
density subgraph problem. In addition, dense subgraphs are defined as k-core[20], k-clique 
[21], (α, d, L)-decompositions [22], etc. 
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The definition of uncertain graphs was first studied by Gao & Gao [23]. The research of 
uncertain graphs has been an active area in recent years, and many related concepts, mining 
and query algorithms, such as reliable subgraphs [12], frequent pattern mining [24], vertex 
reachable query [25], graph clustering [26], etc. have been proposed. A number of definitions 
have been proposed to describe dense subgraphs in a given uncertain graph, e.g., the maximal 
clique in an  uncertain graph in [10]. The k-core subgraph in an uncertain graph [27] and the 
enumeration of maximal cliques from an uncertain graph is proposed in [28]. 

For the density definition and the problem of finding the densest subgraph in an  uncertain 
graph, [11] first formalizes the densest subgraph problem on  uncertain graphs and introduces 
the expected density of an uncertain graph. [29] proposes a different definition of expected 
density of an uncertain graph, we called it expected edge density, and investigates  the problem 
that mining  a top-k dense subgraph mining problem from uncertain graphs and proves that the 
problem is NP-Hard problem. A partial order on all induced subgraphs is defined  in the paper. 
Through the partial order, all induced subgraphs are organized as into an enumeration tree, 
then based on a branch, bound search algorithm is applied to produce top-k dense subgraphs. 
A definition of the disjoint top-k dense subgraph and a heuristic approximation  algorithm are 
also proposed. 

3. Related Definitions 

The uncertain graph is represented as a triplet G=(V，E，p), where V is the set of all vertices, 
E⊆V×V is the set of all edges, and p:E→(0,1] is the probability function of the existence of 
any edge e∈E. Let S⊆V, then GS=(S，E(S)，p') denotes a subgraph derived from S in G, 
where E(S) indicates a set of edges with both endpoints in S. 

Definition 1 Adjoint Graph [30]. Given an uncertain graph G=(V, E, p), the certain graph 
G* obtained with all edges’ probability equal to 1 is called the adjoint graph of G. 

Fig. 3 shows an uncertain graph and its adjoint graphs. In this paper, we assume that the 
probability of each edge is independent of each other. According to the definition of network 
reliability in [12], we get: 

Definition 2 Adjoint Reliability. Given an uncertain graph G = (V, E, p), its adjoint 
reliability is defined as: 

( )= ( )
e E

R G p e
∈
∏                                                       (1) 

Definition 3 Average Edge-probability. Given an uncertain graph G = (V, E, p), GS is an 
induced subgraph for a subset S⊆V, and the average edge-probability of GS is defined as: 
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Definition 4 Expected Edge Density [29]. Given an uncertain graph G = (V, E, p) and GS is 
an induced subgraph for a subset S⊆V, and the expected edge density of GS is: 
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Theorem 1 Given an uncertain graph G = (V, E, p) and  GS is an induced subgraph for  a 

subset S ⊆ V, the expected edge density of GS increases as its average edge-probability 
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increases. 
 

 
Fig. 3. Uncertain Graph and Adjoint Graphs 

 
Proof by definition 1: 
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For a subgraph GS, the number of edges and vertices are determined, so the expected  edge 
density increases with the increase of the average edge-probability. 

Definition 5 Expected Dgree. For a vertex v∈V of the uncertain graph G=(V, E, p), E(e)={e 
|e∈E and v is a vertex of e}, the expected dgree of v is : 
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Definition 6 Expected Density [11]. Given an uncertain graph G = (V, E, p) and  GS is an 

induced  subgraph for  a subset  S⊆V, the expected density of GS is: 
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Definition 7 Densest Subgraph Problem on Uncertertain Graphs. Given an uncertain graph 

G=(V, E, p), an induced  subgraph GS for a subset S⊆V such that δ(GS)=max{δ(GS')|S' ⊆V } is 
called densest subgraph problem on uncertertain graphs, or the UDS problem in short.  That is, 
GS is the UDS of G. 

The GreedyUDS algorithm we introduce in this paper is different from the minimum cut 
idea in [11], and is based on the Charikar algorithm. The relevant modifications are made to 
the properties of the uncertain graph. The algorithm calculates the expected density  of the 
current graph during each iteration and deletes the vertices with the least expected  degree until 
all vertices are removed, and finally outputs the subgraph with the largest expected density . 
The details are described in Algorithm 1. The time complexity of the algorithm is O(m + n), 
where n is the number of vertices and m is the number of edges in the uncertain graph. 

Algorithm 1. GreedyUDS algorithm flow. 
Input: uncertain graph G = (V, E, p) 
Output: vertex set S⊆V 
① n←|V|，Hn←G； 

② for i=n to 2； 
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③ Hi-1=Hi-{𝑣}；/* Where v is  the vertice with the least expected  degree  in Hi */ 
④ end for 
⑤ return H'；/* H' is the subgraph with the largest expected density  in the set {H2, H3,..., 

Hn} */ 
Table 1 shows the experimental results of the GreedyUDS algorithm of several protein 

network datasets. The specific information of the dataset is listed in Table 2. We observed that 
the average value of the edge-probability of the dense subgraph obtained by the algorithm is 
small, and the standard deviation is large, that means there are lots of edges with low 
probability in the subgraph, resulting in low reliability. 

 
Table 1. Densest subgraph 

Data set Δ τ ))(( eGp S
 σ 

945681.protein 28.153 0.408 0.527 0.213 
511145.protein 46.842 0.061 0.338 0.129 
8364.protein 64.174 0.221 0.322 0.194 

Note:δ represents the expected density  of the subgraph, τ denotes the expected edge density of the 
subgraph, σ is the standard deviation of the edge-probability 
 

Table 2. Experimental datasets 

Data set 
Number 

of 
vertices 

Number 
of 

edges 

Average 
edge-possibility 

Edge-probability 
standard 
deviation 

Description 

Celegans 131 687 0.5 0.291 Neural Network 
Email-Enron 36692 183831 0.5 0.289 Email Network 

579138.protein 1672 81770 0.322 0.226 Zymomonas 
mobilis 

945681.protein 2369 124544 0.318 0.213 Acetobacter 
pomorum 

511145.protein 4145 568789 0.297 0.190 Escherichia coli 
1097668.protein 5617 866990 0.283 0.174 Burkholderia 

8364.protein 16745 3117801 0.284 0.183 Xenopus 
Silurana 

 

4. Optimal β-subgraph 

4.1 Problem Analysis 

Definition 8 β-subgraph. Given an uncertain graph G = (V, E, p) and GS is an induced  
subgraph for  a subset S⊆  V, if the average edge-probability of GS is not less than β, where β 
∈ (0, 1), it is called β-subgraph, referred to as β-GS. 

Definition 9 Surplus Degree. Given an uncertain graph G = (V, E, p), and its vertex v∈V 
and the parameter β∈(0,1), E(e)={e|e∈E and v is  one of e }, we define the surplus degree of 
v as: 
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Definition 10 Surplus Average Degree. Given an uncertain graph G = (V, E, p), and its 

subset S⊆  V and the parameter β∈(0, 1), the surplus average degree of the induced subgraph 
GS of the vertex set is defined as: 
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Formula (7) is properly converted to: 
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From formula (8), we find that when the surplus average degree is maximized, the 

parameter β as the influence factor can filter out the subgraphs with more low probability 
edges, that improves the adjoint reliability of the final subgraph. On the right side of the 
equation, the dense structure of the adjoint graph of the subgraph is guaranteed. 

Theorem 2 Given an uncertain graph G = (V, E, p) and the parameter β∈(0, 1), for the 
induced  subgraph GS of a subset S⊆V, if  fβ(GS) ≥ 0, then GS must be a β-subgraph. 

Proof  From fβ(GS) ≥ 0, we have: 
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Definition 11 Optimal β-subgraph. Given an uncertain graph G = (V, E, p), find a subset of 
its vertices S*⊆  V such that: 
 

*( ) max{ ( ) | }S Sf G f G S Vβ β= ⊆                               (9) 
 

We call the subgraph GS* the optimal β-subgraph, and the optimal β-subgraph is referred to 
as OβS in short. 

4.2 GreedyOβS Algorithm 

From definition 5 and definition 6, we find that OβS can be approximated by removing the 
vertices with less surplus degree, so we propose GreedyOβS algorithm by modifying 
GreedyUDS algorithm, and algorithm 2 gives the details. 

Algorithm 2. GreedyOβS. 
Input: Uncertain graph G = (V, E, p) and parameter β 
Output: vertex set S⊆V 
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① Initialize the priority queue Q, calculate the surplus degree of each vertex in the graph, 
and store it in Q, the elements in Q are sorted by increasing surplus degree. 

②  Let n←|V|，Hn←G 
③  With i=n, perform the following steps until i=2: 

1) Calculate the surplus average degree of  Hi 
2) Remove the first element v of Q and update the relevant vertex surplus degree in Q 
3) Hi-1=Hi-{v} 

④ Output H', where H' is the subgraph with the largest surplus average degree  among 
{H2，H3，…，Hn} 

The algorithm requires a parameter β as an average edge-probability threshold, and 
maintains a vertex surplus degree queue of an uncertain graph at the beginning. The algorithm 
removes the vertices with the smallest surplus degree in each iteration and updates the relevant 
vertices and their surplus degree at the same time. The above is repeated until all vertices are 
removed. Finally, the algorithm outputs the vertex subset with the largest fβ(GS). The space and 
time complexity of the algorithm are O(3m + 2n) and O(m + n) respectively，where n is the 
number of vertices and m is the number of edges in the uncertain graph. 

4.3 Algorithm Accuracy 

Suppose that for an uncertain graph G=(V，E，p)，GS* is the largest subgraph of the surplus 
average degree, that is, GS* is the optimal solution. Let  fβ(GS*)=λ，ms*=|E[S*]|，ns* =|S*|，
the average edge-probability of GS* is p (GS*(e)), then we obtain: 

Theorem 3 Given an uncertain graph G=(V，E，p)，for any of its vertex u∈S*，there 
must be SDeg(u)≥λ． 

Proof Since GS* is the optimal solution, we know that fβ(GS*)≥fβ(GS*\{u})，then: 
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Theorem 4 Given an uncertain graph G = (V, E, p) and a parameter β∈(0, 1), GS* is an 

optimal β-subgraph of G, that is the optimal solution, it’s surplus average degree is fβ(GS*) . GS' 
is a near optimal β-subgraph of G, obtained by GreedyOβS, that is the approximate solution, 
it’s surplus average degree is fβ(GS'). Then, 

𝑓𝛽�𝐺𝑆′�

𝑓𝛽(𝐺𝑠∗) ≥
1
2

                                                        (10) 

that is, the surplus average degree of GS' obtained by the GreedyOβS algorithm is not less 
than 1/2 of the surplus average degree of the optimal β-subgraph GS*. 
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Proof  Let the algorithm iterative process proceed until the first vertex v of S* is removed. 
The resulting vertex set is S' ⊆V, and the number of vertices of S' is ns', and the number of 
edges is ms'. From Theorem 3, SDeg(v)≥λ, and because the algorithm removes the vertices 
with the smallest surplus degree in every iteration, we have: 

'
'
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Let S+⊆V be the result of GreedyOβS. Since the algorithm finally outputs the vertex subset 
with the largest fβ(GS), then we know that: 

'( ) ( )
2SSf G f Gβ β
λ

+ ≥ ≥  

Therefore, even in the worst case, the surplus average degree of the solution obtained by the 
algorithm is not less than 1/2 of the surplus average degree of the optimal solution. 

5. Experiments and Results 
In this section, a lot of simulations are done to compare the optimal β-subgraph and the densest 
subgraph  of the uncertain graph. We use the GreedyUDS algorithm to obtain the densest 
subgraph  and use the GreedyOβS algorithm to obtain the optimal β-subgraph. The differences 
between UDS and OβS under different evaluation indexes are then compared, and the 
influence of different parameters β on the obtained OβS is also tested. 

All the algorithms in this paper are implemented with Python3.5. The minimum value of 
float type in Python is 2.225e-308, which is represented by MIN. The experimental 
environment is a PC with a Core I5 2.30GHz processor and 8GB of RAM and running the 
win10 operating system. The datasets used in this experiment are shown in Table 3. Without 
loss of generality, this paper assures all edges of the graph dataset Celegans and Email-Enron 
are assigned with random probability, converted to uncertain graphs, and the remaining 
uncertain graphs are true datasets. Both are protein networks from the STRING-DB database 
(http://string-db.org). 

 
Table 3. Comparison between UDS and OβS 

Data Set 
τ ))(( eGp S

 σ R 
UDS OβS UDS OβS UDS OβS UDS OβS 

Celegans 0.075 0.254 0.534 0.881 0.292 0.095 0.177 1.026 
Email-Enron 0.069 0.721 0.506 0.901 0.290 0.066 <MIN 0.425 

579138.protein 0.642 0.940 0.718 0.947 0.291 0.130 <MIN 2.487e-49 
945681.protein 0.408 0.962 0.527 0.967 0.302 0.104 <MIN 6.837e-22 
511145.protein 0.061   0.940 0.338 0.944 0.212 0.120 <MIN 2.179e-69 

8364.protein 0.080 0.900 0.267 0.900 0.162 0.002 <MIN 1.069e-305 
 
 

http://string-db.org/
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5.1 Evaluation Indicators 

The evaluation index of this paper is divided into two parts. The first part evaluates the density 
of the subgraph and uses the expected edge density  τ of formula 3 as the evaluation criterion. 
The second part evaluates the reliability of the subgraph, using the adjoint reliability R of 
formula 1 as the direct evaluation criterion. At the same time, the average edge-probability and 
the edge-probability standard deviation (σ) are used as indirect evaluation indicators, that is, 
when the average edge-probability of a subgraph is high, and the standard deviation of the 
edge-probability is low, the adjoint reliability of the subgraph is considered to be higher. 

5.2 Model Comparison 

The GreedyUDS and GreedyOβS algorithms were simulated with the same batch of datasets. 
The default parameter β was 0.6, and the results were compared with the evaluation indicators 
in the section 5.1. The results obtained are also used to manifest OβS’s advantages over UDS. 
The calculation results of each evaluation index are shown in Table 3. Moreover, two 
experimental datasets were randomly selected, and the same edges were randomly selected 
from the original image, UDS and OβS. Scatter plots are drawn to visually compare the 
edge-probability distributions of these three models. The results are depicted in Fig. 3. The 
cross point represents the original image, the diamond represents UDS, and the circle 
represents OβS. 

Analysis of the above experimental results are concluded as follows: 
1) The density of OβS is greatly improved compared with UDS. Table 3 shows that the 

average expected edge density of UDS calculated by all experimental datasets is 0.223, and 
the average expected edge density of OβS is 0.786. Additionally, for the experimental set of 
artificially transformed uncertain graphs, compared with UDS, the expected edge density of 
OβS is improved and the average increases from 0.072 to 0.488. For the experimental graph 
of uncertain graphs from the protein network, the expected edge density of OβS is higher 
than that of UDS, and the average increases from 0.298 to 0.936. Therefore, the density of 
OβS is significantly higher than that of UDS. 

2) The edge-probability distribution of OβS is more uniform than UDS and tends toward 1. 
Table 3 shows that the average edge-probability of OβS is improved for all experimental 
datasets, with the average increased by 0.9 or improved by about 40%. At the same time, the 
standard deviation of the edge-probability is reduced, and is dropped by about 60%. From 
Fig. 3 we observe that most of the edges of the original image have lower probability, and 
the edge-probability distributions of UDS and OβS are correspondingly improved, and the 
edge-probability distribution of OβS tends closer to 1 than UDS. 

3) The reliability of OβS is greatly improved compared with UDS. Conclusion 2 implies the 
reliability of OβS is higher than that of UDS. In addition, Table 3 displays that for each 
experimental dataset, the adjoint reliability of OβS is significantly improved. Therefore, 
OβS can be regarded as more reliable than UDS. 
 

5.3 Parameter Selection 

 
The following analyzes the effect of parameter β on OβS through experiments. We select two 
protein networks as our experimental datasets, and Table 4 shows the experimental results. 
From the fβ(GS) equation we know that when β tends to zero, maximizing fβ(GS) is equivalent 
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to maximizing the expected density. Therefore, when β is 0.1, the result is close to that of UDS. 
When the value of β is gradually increased, the scale and the expected density of OβS become 
smaller, and the expected edge density and average edge-probability of OβS become larger. 

 

 
Fig. 3. Edge-Probability Distribution 

 
Table 4. Comparison between different β 

Data set β Number of 
edges 

δ τ ))(( eGp S
 σ 

579138.protein 

0.1 88 30.721 0.706 0.771 0.271 
0.2 78 30.203 0.785 0.829 0.242 
0.4 70 29.371 0.851 0.877 0.207 
0.6 57 26.322 0.940 0.947 0.130 
0.8 50 23.896 0.975 0.977 0.072 

8364.protein 

0.1 3579 110.129 0.062 0.288 0.190 
0.2 593 58.101 0.196 0.842 0.203 
0.4 466 55.094 0.237 0.892 0.119 
0.6 116 51.754 0.900 0.900 0.002 
0.8 115 51.303 0.900 0.900 0.001 
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From above we find that by controlling the value of β, we can control the size of OβS. In the 
study of the actual uncertain dense subgraph, this is achieved by appropriately adjusting the 
size of the parameter β. Therefore, the OβS model has high scalability in practical 
applications. 

6. Conclusion 
This paper extensively understands the modern dense subgraphs and reliable subgraph mining 
methods of uncertain graphs. Based on the characteristics of uncertain graphs and 
requirements of dense subgraphs, a novel concept of optimal β-subgraph is proposed. A 
greedy algorithm is also devised to approximately mine the optimal β-subgraph. Experiments 
demonstrate that the optimal β-subgraph has many advantages over previous dense subgraph 
models. Therefore, the algorithm has broad practical applications. 

References 
[1] Sozio M, Gionis A, “The community-search problem and how to plan a successful cocktail party,”  

in Proc. of the 16th ACM SIGKDD Int Conf on Knowledge discovery and data mining, Washington: 
ACM, pp.939-948, July 25-28, 2010.  Article (CrossRef Link). 

[2] Fratkin E, Naughton B T, Brutlag D L, and Batzoglou S. Motifcut, “MotifCut: regulatory motifs 
finding with maximum density subgraphs,” Bioinformatics, vol. 22, no. 14, pp.150-157, July, 2006. 
Article (CrossRef Link). 

[3] Angel A, Sarkas N, Koudas N, and Srivastava D, “Dense subgraph maintenance under streaming 
edge weight updates for real-time story identication,” VLDB Endowment, vol. 5, no. 6, pp.  
574-585, February, 2012.  Article (CrossRef Link). 

[4] Gao X, Gao Y, “Connectedness Index of Uncertain Graphs,” International Journal of 
Uncertainty,Fuzziness and Knowledge-Based Systems, vol. 21, no. 1, pp. 127-137, 2013. 
Article (CrossRef Link). 

[5] Szklarczyk D, Franceschini A, et al, “STRING v10: protein–protein interaction networks, 
integrated over the tree of life,” Nucleic Acids Research, vol. 43,pp. 447-452, January 28, 2015. 
Article (CrossRef Link). 

[6] Rual J F, Venkatesan K, Hao T, et al, “Towards a proteome-scale map of the human 
protein-protein interacrion network,” Nature, vol. 437, no. 7062, pp. 1173-1178, October 20, 2005.     
Article (CrossRef Link). 

[7] Wang W, “Emergence of a DNA-damage response network consisting of Fanconianaemia and 
BRCA proteins,” Nature Reviews Genetics, vol. 8, no. 10, pp. 735-748, 2007. 
Article (CrossRef Link). 

[8] Zou Z, “Polynomial-time algorithm for finding densest subgraphs in uncertain graphs,” in Proc. of 
the 11th workshop on mining and learning with graph, Chicago: MLG, August 11, 2013. 
Article（CrossRef Link). 

[9] Zou Z，Li J，Gao H，et al, “Finding top-k maximal cliques in an uncertain graph,” in Proc. of 
the 26th International Conference on Data Enginering, California, USA, pp. 649-652, March 1-6, 
2010.  

[10] Zou Zhaonian, Zhu Rong, “Mining Top-k maximal cliques from large uncertain graphs,”  Chinese 
Journal of Computers, vol. 36, no. 10, pp. 2146-2155, 2013. (in Chinese). Article (CrossRef Link). 

[11] Jin R, Liu L, Aggarwal C C, “Discovering highly reliable subgraphs in uncertain graphs,” in Proc. 
of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San 
Diego:ACM, pp. 992-1000, August 21-24, 2011.  Article (CrossRef Link). 

[12] Cheng J, Ke Y, Fu A W C, et al, “Finding maximal cliques in massive networks by h*-graph,” in 
Proc. of the 2010 ACM SIGMOD Int Conf on Management of Data, Indianapolis: ACM, pp. 

http://dx.doi.org/doi:10.1145/1835804.1835923
http://dx.doi.org/doi:10.1093/bioinformatics/btl243
http://dx.doi.org/doi:10.14778/2168651.2168658
http://dx.doi.org/doi:10.1142/S0218488513500074
http://dx.doi.org/doi:10.1093/nar/gku1003
http://dx.doi.org/doi:10.1038/nature04209
http://dx.doi.org/doi:10.1038/nrg2159
http://snap.stanford.edu/mlg2013/accepted.html
http://dx.doi.org/doi:10.3724/SP.J.1016.2013.02146
http://dx.doi.org/doi:10.1145/2020408.2020569


2998                                                                Lu et al.: Mining Highly Reliable Dense Subgraphs from Uncertain Graphs 

447-458, June 6-10, 2010.  Article (CrossRef Link). 
[13] Tsourakakis C, Bonchi F, Gionis A, Gullo F, Tsiarli M, “Denser than the densest subgraph: 

Extracting optimal quasi-cliques with quality guarantees,” in Proc. of the 19th ACM SIGKDD Int 
Conf on Knowledge discovery and data mining, Chicago: ACM, pp. 104-112, August 11-14, 2013. 
Article (CrossRef Link). 

[14] Goldberg A V, “Finding a maximum density subgraph,” CA: University of California at Berkeley, 
1984.  

[15] Charikar M, “Greedy approximation algorithms for finding dense components in a graph,” in  Proc. 
of the 3rd Int  Workshop on Approximation Algorithms for Combinatorial Optimization, 
Saarbrucken: ACM, pp. 84-95, September 5-8, 2000.  Article (CrossRef Link). 

[16] Andersen R, Chellapilla K, “Finding Dense Subgraphs with Size Bounds,” in Proc. of  the 
International Work on Algorithms and Models for the Web-graph (WAW 2009), Barcelona, Spain, 
pp. 25-37, Feb. 12-13, 2009.  Article (CrossRef Link). 

[17] Khuller S, Saha B, “On Finding Dense Subgraphs,” in Proc. of ICALP 2009, Rhodes, Greece, pp. 
597-608, July 5-12, 2009.  Article (CrossRef Link). 

[18] Bahmani B, Kumar R, Vassilvitskii S, “Densest subgraph in streaming and MapReduce,” in Proc. 
of the VLDB Endowment, vol.5, no. 5, pp. 454-465, 2012.  Article (CrossRef Link). 

[19] Epasto A, Lattanzi S, Sozio M, “Efficient Densest Subgraph Computation in Evolving Graphs,” in 
Proc. of International Conference on World Wide Web, International World Wide Web 
Conferences Steering Committee, pp. 300-310, May 18-22, 2015.  Article (CrossRef Link). 

[20] Seidman S B, “Network structure and minimum degree,” Social Networks, pp. 269–287, vol. 5, no. 
3, 1983.  Article (CrossRef Link). 

[21] Tsourakakis C, “The k-cliques densest subgraph problem,” in Proc. of the 24th Int Conf on World 
Wide Web, Florence: ACM, pp. 1122-1132, May 18-22, 2015.  Article (CrossRef Link). 

[22] Bhattacharya S, Henzinger M, Nanongkai D, et al, “Space- and Time-Efficient Algorithm for 
Maintaining Dense Subgraphs on One-Pass Dynamic Streams,” in Proc. of 47th ACM Symposium 
on Theory of Computing, pp. 173-182, June 14-17, 2015.  Article (CrossRef Link). 

[23] XIULIAN GAO, YUAN GAO, “CONNECTEDNESS INDEX OF UNCERTAIN GRAPH,”  
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 21, no. 1, pp. 
127-137, 2013.  Article (CrossRef Link). 

[24] Zou Z, Li J, Gao H, et al, “Mining Frequent Subgraph Patterns from Uncertain Graph Data,”  IEEE 
Transactions on Knowledge & Data Engineering, vol. 22, no. 9, pp. 1203-1218, 2010.     
Article (CrossRef Link). 

[25] Jin R, Liu L, Ding B, et al, “Distance-constraint reachability computation in uncertain graphs,” in 
Proc. of the VLDB Endowment (PVLDB 2011), vol. 4, no. 9, pp. 551-562, 2011.    
 Article (CrossRef Link). 

[26] Kollios G, Potamias M, Terzi E, “Clustering Large Probabilistic Graphs,” IEEE Transactions on 
Knowledge & Data Engineering, vol. 25, no. 2, pp. 325-336, 2013.  Article (CrossRef Link). 

[27] Bonchi F, Gullo F, Kaltenbrunner A, Volkovich Y, “Core de-composition of uncertain graphs,” in 
Proc. of the 20th ACM SIGKDD Int Conf on Knowledge discovery and data mining, New York: 
ACM, pp. 1316-1325, August 24 – 27, 2014.  Article (CrossRef Link). 

[28] Provo A, Xu P, Tirthapura S, “Enumeration of maximal cliques from an uncertain graph,”  IEEE 
Trans on  Knowledge and Data Engineering, vol. 29, no. 3, pp. 543-555, 2017.    
 Article (CrossRef Link). 

[29] Zhu R, Zou Zhaonian, Li Jianzhong, “Mining top-k dense subgraphs from uncertain graphs,”  
Chinese Journal of Computers, vol. 39, no. 8, pp. 1570-1582, 2016. (in Chinese) 

[30] Gao Yuan, “Uncertain Graph and Uncertain Network,” Doctor-Tsinghua University, Beijing, 2013. 
(in Chinese)   Article（CrossRef Link). 

 
 
  

http://dx.doi.org/doi:10.1145/1807167.1807217
http://dx.doi.org/doi:10.1145/2487575.2487645
http://dx.doi.org/doi:10.1007/3-540-44436-X_10
http://dx.doi.org/doi:10.1007/978-3-540-95995-3_3
http://dx.doi.org/doi:10.1007/978-3-642-02927-1_50
http://dx.doi.org/doi:10.14778/2140436.2140442
http://dx.doi.org/doi:10.1145/2736277.2741638
http://dx.doi.org/doi:10.1016/0378-8733(83)90028-X
http://dx.doi.org/doi:10.1145/2736277.2741098
http://dx.doi.org/doi:10.1145/2746539.2746592
http://dx.doi.org/doi:10.1142/S0218488513500074
http://dx.doi.org/doi:10.1109/TKDE.2010.80
http://dx.doi.org/doi:10.14778/2002938.2002941
http://dx.doi.org/doi:10.1109/TKDE.2011.243
http://dx.doi.org/doi:10.1145/2623330.2623655
http://dx.doi.org/doi:10.1109/TKDE.2016.2527643
http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&dbname=CDFD1214&filename=1014020745.nh&v=MTIxMTJGQ3ZrVkx6UFZGMjZHck82SHRiSXFwRWJQSVI4ZVgxTHV4WVM3RGgxVDNxVHJXTTFGckNVUkxPZlp1Um4=


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019                                        2999 

 
 

Lu Yihong received her master degree in 2003 from Hangzhou Institute of  Electronics 
Engineering. Now she is an associate professor in College of Computer Science & 
Technology, Zhejiang University of Technology. Her main research interests include 
software theory and data mining.  
E-mail：lyh@zjut.edu.cn 
 
 
 
 

 
Huang Ruizhi receicved his master degree in Computer Science & Technology from 
Zhejiang University of Technology in 2018. His main research interests include graph mining 
and data mining 
E-mail：huanggw1@gmail.com 
 
 
 
 
 
 
Huang Decai received his doctor's degree in 1994 from Chongqing University. Now he is a 
professor in College of Computer Science & Technology, Zhejiang University of Technology. 
His main research interests include  data mining  and software theory.  
E-mail：hdc@zjut.edu.cn 
 


