• 제목/요약/키워드: Sub-surface crack

검색결과 108건 처리시간 0.022초

Ni-Pd-CNT Nanoalloys에서 성장한 α-Ga2O3의 특성분석 (Characterization of Alpha-Ga2O3 Epilayers Grown on Ni-Pd and Carbon-Nanotube Based Nanoalloys via Halide Vapor Phase Epitaxy)

  • 차안나;이기업;김형구;성채원;배효정;노호균;;하준석
    • 마이크로전자및패키징학회지
    • /
    • 제28권4호
    • /
    • pp.25-29
    • /
    • 2021
  • 본 연구에서는 HVPE 방법을 사용하여 Ni-Pd and Carbon-Nanotube nanoalloys (Ni-Pd-CNT) 위에 α-Ga2O3을 성장시켜 Ni-Pd-CNT에 따른 효과를 확인하였다. 그 결과, 무전해 Ni 도금 시간 40초에서 성장한 α-Ga2O3 에피층의 두께는 11 ㎛로 확인되었다. 또한, α-Ga2O3 에피층의 표면 형태는 균열 발생 없이 기판에 대한 우수한 접착력을 보여주었다. 결과적으로, 성장과정에서 발생한 수평 성장에 의해 α-Ga2O3 대의 비대칭면인 ($10{\bar{1}}4$) FWMH 값을 크게 감소할 수 있었다.

12Cr합금강의 부식열화에 의한 피로파괴 특성 (Fatigue Fracture Characteristics by Corrosion Degradation of 12Cr Alloy Steel)

  • 조선영;김철한;배동호
    • 대한기계학회논문집A
    • /
    • 제25권6호
    • /
    • pp.996-1003
    • /
    • 2001
  • In order to investigate the fatigue fracture characteristics by corrosion degradation of 12Cr alloy steel, both the fatigue characteristics in air of them artificially degraded during long period and the corrosion fatigue characteristics were experimentally evaluated in various environments which were determined from electro-chemical polarization tests. And also, their fracture mechanisms were analyzed and compared, fractographyically. From their results, the fracture mechanical characteristics of it artificially degraded during long period in the distilled water, 3.5 wt.% NaCl solution and 12.7wt.%(1M) Na$_2$SO$_4$solution of 25, 60 and 90$\^{C}$ did not show distinguishable difference comparing with non-corroded one in regardless of temperature and degradation period. It means that degradation of the material by just surface corrosion does not remarkably affect to fatigue crack growth. On the other hand, the crack growth rates by corrosion fatigue increased due to activity increase of corrosive factors such as OH(sub)-,Cl(sup)- and SO$_4$(sup)- at the crack tip with temperature increase. Therefore, the crack growth rates by corrosion fatigue were more faster than that in air of the artificially degraded specimen due to the such difference of crack growth mechanism.

실리콘 카바이드의 초정밀 연삭 가공에 관한 연구 (Research on Ultra-precision Grinding Work of Silicon Carbide)

  • 박순섭;원종호
    • 한국정밀공학회지
    • /
    • 제26권9호
    • /
    • pp.58-63
    • /
    • 2009
  • Silicon carbide (SiC) has been used for many engineering applications because of their high strength at high temperatures and high resistances to chemical degradation. SiC is very useful especially for a glass lens mold whose components demanded to the machining with good surface finish and low surface damage. The performance and reliability of optical components are strongly influenced by the surface damage of SiC during grinding process. Therefore, the severe process condition optimization shall be necessary for the highly qualified SiC glass lens mold. Usually the major form of damage in grinding of SiC is a crack occurs at surface and subsurface. The energy introduced in the layers close to the surface leads to the formation of these cracks. The experimental studies have been carried out to get optimum conditions for grinding of silicon carbide. To get the required qualified surface finish in grinding of SiC, the selection of type of the wheel is also important. Grinding processes of sintered SiC work-pieces is carried out with varying wheel type, depth of cut and feed using diamond wheel. The machining result of the surface roughness and the number of flaws, have been analyzed by use of surface profilers and SEM.

Stiffness effect of testing machine indenter on energy evolution of rock under uniaxial compression

  • Tan, Yunliang;Ma, Qing;Wang, Cunwen;Liu, Xuesheng
    • Geomechanics and Engineering
    • /
    • 제30권4호
    • /
    • pp.345-352
    • /
    • 2022
  • When rock burst occurs, the damaged coal, rock and other fragments can be ejected to the roadway at a speed of up to 10 m/s. It is extremely harmful to personnel and mining equipment, and seriously affects the mining activities. In order to study the energy evolution characteristics, especially kinetic energy, in the process of rock mass failure, this paper first analyzes the energy changes of the rock in different stages under uniaxial compression. The formula of the kinetic energy of rock sample considering the energy from the indenter of the testing machine is obtained. Then, the uniaxial compression tests with different stiffness ratios of the indenter and rock sample are simulated by numerical simulation. The kinetic energy Ud, elastic strain energy Ue, friction energy Uf, total input energy U and surface energy Uθ of crack cracking are analyzed. The results show that: The stiffness ratio has influence on the peak strength, peak strain, Ud, Ue, Uθ, Uf and U of rock samples. The variation trends of strength, strain and energy with stiffness are different. And when the stiffness ratio increases to a certain value, if the stiffness of the indenter continues to increase, it will have no longer effect on the rock sample.

이온 실화처리한 Ni-Cr-Mo강의 저온파괴인성에 관한 연구 (A Study on the Low Temperature Fracture Toughness of Ion-nitrided Ni-Cr-Mo Steel)

  • 오세욱;윤한기;문인철
    • 한국해양공학회지
    • /
    • 제1권2호
    • /
    • pp.101-112
    • /
    • 1987
  • Fracture toughness characterization in the transition region is examined for heat-treated and ionnitrided Ni-Cr-Mo steel. After heat treatment for the specimens of Ni-Cr-Mo steel, organizations of specimens-specimens which are heat-treated and ion-nitrided for 4 hours at 500 .deg. C and 5 torr in 25%N/dub 2/-75%H/sub 2/mixed gas-, hardness variety, and X-ray diffraction pattern of the ion-nitriding compound layer are observed. Fracture toughenss test of unloading compliance method were conducted over the regions from room trmperature to -70.deg. C. The compound layer was consisted of r'=Fe/sub 4/N phase and ion-nitrided layer's depth was 200mm from surface. The transition regions of heat-treated and ion-nitrided specimens were about -30.deg. C and -50.deg. C, respectively. The transition region of ion-nitrided specimens is estimated less than that of heat-treated one, and this is the effect of ion-nitriding.

  • PDF

전기로를 이용한 Si || SiO2/Si3N4 || Si 이종기판쌍의 직접접합 (Direct Bonding of Si || SiO2/Si3N4 || Si Wafer Pairs With a Furnace)

  • 이상현;이상돈;서태윤;송오성
    • 한국재료학회지
    • /
    • 제12권2호
    • /
    • pp.117-120
    • /
    • 2002
  • We investigated the possibility of direct bonding of the Si ∥SiO$_2$/Si$_3$N$_4$∥Si wafers for Oxide-Nitride-Oxide(ONO) gate oxide applications. 10cm-diameter 2000$\AA$-thick thermal oxide/Si(100) and 500$\AA$-Si$_3$N$_4$LPCVD/Si (100) wafers were prepared, and wet cleaned to activate the surface as hydrophilic and hydrophobic states, respectively. Cleaned wafers were premated wish facing the mirror planes by a specially designed aligner in class-100 clean room immediately. Premated wafer pairs were annealed by an electric furnace at the temperatures of 400, 600, 800, 1000, and 120$0^{\circ}C$ for 2hours, respectively. Direct bonded wafer pairs were characterized the bond area with a infrared(IR) analyzer, and measured the bonding interface energy by a razor blade crack opening method. We confirmed that the bond interface energy became 2,344mJ/$\m^2$ when annealing temperature reached 100$0^{\circ}C$, which were comparable with the interface energy of homeogenous wafer pairs of Si/Si.

Mg-5Bi-3Al 마그네슘 고속 압출재의 미세조직과 고주기피로 특성 (Microstructure and High-Cycle Fatigue Properties of High-Speed-Extruded Mg-5Bi-3Al Alloy)

  • 차재원;진상철;박성혁
    • 소성∙가공
    • /
    • 제31권5호
    • /
    • pp.253-260
    • /
    • 2022
  • In this study, the microstructural characteristics of a high-speed-extruded Mg-5Bi-3Al (BA53) alloy and its tensile, compressive, and high-cycle fatigue properties are investigated. The BA53 alloy is successfully extruded at a die-exit speed of 16.6 m/min without any hot cracking using a large-scale extruder for mass production. The homogenized BA53 billet has a large grain size of ~900 ㎛ and it contains fine and coarse Mg3Bi2 particles. The extruded BA53 alloy has a fully recrystallized microstructure with an average grain size of 33.8 ㎛ owing to the occurrence of complete dynamic recrystallization during high-speed extrusion. In addition, the extruded BA53 alloy contains numerous fine lath-type Mg3Bi2 particles, which are formed through static precipitation during air cooling after exiting the extrusion die. The extruded BA53 alloy has a high tensile yield strength of 175.1 MPa and ultimate tensile strength of 244.4 MPa, which are mainly attributed to the relative fine grain size and numerous fine particles. The compressive yield strength (93.4 MPa) of the extruded BA53 alloy is lower than its tensile yield strength, resulting in a tension-compression yield asymmetry of 0.53. High-cycle fatigue test results reveal that the extruded BA53 alloy has a fatigue strength of 110 MPa and fatigue cracks initiate at the surface of fatigue test specimens, indicating that the Mg3Bi2 particles do not act as fatigue crack initiation sites. Furthermore, the extruded BA53 alloy exhibits a higher fatigue ratio of 0.45 than other commercial extruded Mg-Al-Zn-based alloys.

금속 알콕시드를 이용한 투명 결정화유리의 저온 합성 (1) Li2O·1.7Al2O3·8.6SiO2 다공성 겔체의 합성 (Low Temperature Preparation of Transparent Glass-Ceramic Using Metal-Alkoxides (1) Synthesis and Properties of Porous Monolithic Gel in Li2O·1.7Al2O3·8.6SiO2)

  • 전경수;탁중재
    • 공업화학
    • /
    • 제18권6호
    • /
    • pp.568-574
    • /
    • 2007
  • 투명결정화 유리의 전구체로서 균열이 없는 $Li_2O1{\cdot}7Al_2O_3{\cdot}8.6SiO_2$ 조성인 다공성 괴상 겔을 formamide를 첨가한 알콕시드 용액으로부터 sol-gel방법으로 합성하였다. 겔 합성에서 겔화 활성화 에너지, 비표면적, 습윤겔의 완전 탈수에 필요한 온도, 기공의 부피 및 기공크기와 분포를 측정하였고, 겔의 결정화온도를 검토하고자 시차열분석을 실시하였다. 겔화의 활성화에너지는 가수분해에 필요한 물의 첨가량에 따라 13~14 kcal/mol 범위를 나타내고, 물의 첨가량이 가수분해시 필요한 이론량의 3배 이상일 경우, $70{\sim}75^{\circ}C$, 건조속도 0.1~0.3 %/h에서는 겔의 균열을 방지할 수 있어 안정한 괴상 겔을 제조할 수 있었다. $180^{\circ}C$에서 건조한 겔체는 비표면적, 기공부피 및 기공크기분포는 $239.40m^2/g$, 0.001~0.03 mL/g 그리고 1~122 nm 반지름의 미세구조로 된 투명 겔체로서 다공질 물질임이 확인되었고, 건조겔의 시차열분석 결과 $800^{\circ}C$ 부근에서 1차 발열피크, $980^{\circ}C$ 부근에서가 2차 발열피크가 확인되어 결정화가 일어남을 알 수 있었다.

Pd 첨가량 및 첨가방법이 알코올 센서용 SnO2 반도체 후막 특성에 미치는 영향 연구 (Effects of Pd Addition Amount and Method on the Characteristics of SnO2 Semiconductor Thick Films for Alcohol Gas Sensors)

  • 김준형;김형관;이호년;김현종;이희철
    • 한국표면공학회지
    • /
    • 제50권5호
    • /
    • pp.411-420
    • /
    • 2017
  • In this paper, two methods of making the Pd-added $SnO_2$ ($Pd-SnO_2$) powder with pure tetragonal phase by the hydrazine method were suggested and compared in terms of crystal structure, surface morphology, and alcohol gas response. One of the addition methods is to use $PdCl_2$ as a Pd source, the other is to use Pd-based organic with oleylamine (OAM). When Pd concentration was increased from 0 to 5 wt%, the average grain size of $Pd-SnO_2$ made with Pd-OAM were decreased from 32 to 12 nm. In the case of using with $PdCl_2$, grain size of the $PdCl_2$ fell to less than 10 nm. However, agglomerated and extruded surface morphology was observed for the films with Pd addition over 4 wt%. The crack-free $Pd-SnO_2$ thick films were able to successfully fill the $30{\mu}m$ gap of patterned Pt electrodes by optimized ink dropping method. Also, the 2 wt% $Pd-SnO_2$ thick film made with PdCl2 showed gas responses ($R_{air}/R_{gas}$) of 3.7, 5.7 and 9.0 at alcohol concentrations of 10, 50 and 100 ppm, respectively. On the other hand, the prepared 3 wt% $Pd-SnO_2$ thick film with Pd-OAM exhibited very excellent responses of 3.4, 6.8 and 12.2 at the equivalent measurement conditions, respectively. The 3 wt% $Pd-SnO_2$ thick film with Pd-OAM has a specific surface area of $31.39m^2/g$.

HVPE 방법으로 성장된 alpha-Ga2O3의 특성에 대한 VI/III ratio 변화 효과 (Effect of VI/III ratio on properties of alpha-Ga2O3 epilayers grown by halide vapor phase epitaxy)

  • 손호기;최예지;이영진;이미재;김진호;김선욱;라용호;임태영;황종희;전대우
    • 한국결정성장학회지
    • /
    • 제28권3호
    • /
    • pp.135-139
    • /
    • 2018
  • 본 연구에서는 HVPE 성장법을 이용하여 사파이어 기판 위에 알파 갈륨옥사이드를 성장시키며 VI/III 비의 변화에 따른 효과를 확인하였다. 성장된 알파 갈륨옥사이드의 표면은 평평하고 crack 없이 성장되었다. 성장된 갈륨옥사이드의 광학적 특성을 분석하기 위해 투과율을 측정하고 광학 밴드갭을 얻었다. 광학 밴드갭은 약 5.0 eV로 나타났고 VI/III 비가 증가함에 따라 비례하여 증가하는 결과를 보여주었다. 이론적 광학 밴드갭에 가장 근접한 VI/III 비가 23인 조건에서 성장된 알파 갈륨옥사이드의 결정성을 확인하기 위해 HR-XRD를 이용하여 FWHM을 측정하였고 이를 바탕으로 전위밀도를 계산하였을 때 나선형 전위밀도는 $1.5{\times}10^7cm^{-2}$, 칼날 전위 밀도는 $5.4{\times}10^9cm^{-2}$로 계산되었다.