DOI QR코드

DOI QR Code

Characterization of Alpha-Ga2O3 Epilayers Grown on Ni-Pd and Carbon-Nanotube Based Nanoalloys via Halide Vapor Phase Epitaxy

Ni-Pd-CNT Nanoalloys에서 성장한 α-Ga2O3의 특성분석

  • Cha, An-Na (Department of Chemical Engineering, Chonnam National University) ;
  • Lee, Gieop (Department of Chemical Engineering, Chonnam National University) ;
  • Kim, Hyunggu (Department of Chemical Engineering, Chonnam National University) ;
  • Seong, Chaewon (Department of Chemical Engineering, Chonnam National University) ;
  • Bae, Hyojung (Optoelectronics Convergence Research Center, Chonnam National University) ;
  • Rho, Hokyun (Energy Convergence Core-Facility, Chonnam National University) ;
  • Burungale, Vishal Vilas (Department of Chemical Engineering, Chonnam National University) ;
  • Ha, Jun-Seok (Department of Chemical Engineering, Chonnam National University)
  • 차안나 (전남대학교 화학공학과) ;
  • 이기업 (전남대학교 화학공학과) ;
  • 김형구 (전남대학교 화학공학과) ;
  • 성채원 (전남대학교 화학공학과) ;
  • 배효정 (전남대학교 광전자융합기술연구소) ;
  • 노호균 (전남대학교 에너지융복합전문핵심연구지원센터) ;
  • ;
  • 하준석 (전남대학교 화학공학과)
  • Received : 2021.11.18
  • Accepted : 2021.11.24
  • Published : 2021.12.30

Abstract

This paper demonstrates the utility of the Ni-Pd and carbon-nanotube (Ni-Pd-CNT)-based nanoalloy to improve the α-Ga2O3 crystal quality using the halide-vapor-phase epitaxy (HVPE) method. As result, the overall thickness of the α-Ga2O3 epitaxial layer increased from a Ni electroless plating time of 40 s to 11 ㎛ after growth. In addition, the surface morphologies of the α-Ga2O3 epilayers remained flat and crack-free. The full-width half-maximum results of the X-ray diffraction analysis revealed that the ($10{\bar{1}}4$) diffraction patterns decreased with increasing nominal thickness.

본 연구에서는 HVPE 방법을 사용하여 Ni-Pd and Carbon-Nanotube nanoalloys (Ni-Pd-CNT) 위에 α-Ga2O3을 성장시켜 Ni-Pd-CNT에 따른 효과를 확인하였다. 그 결과, 무전해 Ni 도금 시간 40초에서 성장한 α-Ga2O3 에피층의 두께는 11 ㎛로 확인되었다. 또한, α-Ga2O3 에피층의 표면 형태는 균열 발생 없이 기판에 대한 우수한 접착력을 보여주었다. 결과적으로, 성장과정에서 발생한 수평 성장에 의해 α-Ga2O3 대의 비대칭면인 ($10{\bar{1}}4$) FWMH 값을 크게 감소할 수 있었다.

Keywords

Acknowledgement

본 연구는 교육부의 재원으로 한국기초과학지원연구원 국가연구시설장비진흥센터의 지원을 받은 기초과학연구역량강화사업 핵심연구지원센터 조성 지원 과제에서 에너지 융복합 전문핵심 연구지원센터를 조성하여(2019R1A6C1010024) 수행된 연구결과임.

References

  1. H. Sun, K. H. Li, C. G. Torres Castanedo, S. Okur, G. S. Tompa, T. Salagaj, S. Lopatin, A. Genovese, X. Li,, "HCl Flow-Induced Phase Change of α-, β-, and ϵ-Ga2O3 Films Grown by MOCVD, Cryst", Growth Des., 18, 2370-2376 (2018). https://doi.org/10.1021/acs.cgd.7b01791
  2. D. Shinohara, S. Fujita, "Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition", Jpn. J. Appl. Phys., 47, 7311-7313 (2008). https://doi.org/10.1143/JJAP.47.7311
  3. K. Kaneko, H. Kawanowa, H. Ito, S. Fujita, "Evaluation of Misfit Relaxation in α-Ga2O3 Epitaxial Growth on α-Al2O3 Substrate", Jpn. J. Appl. Phys., 51, 020201 (2012).
  4. G. Lee, R. Park, and Roy B. K. Chung, "Understanding the Electrical Property of Si-doped β-Ga2O3 via Thermal Annealing Process", J. Microelectron. Packag. Soc., 27(4), 19-24 (2020). https://doi.org/10.6117/KMEPS.2020.27.4.019
  5. S. J. Pearton, F. Ren, M. Tadjer, J. Kim, "Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS", J. Appl. Phys., 124 (2018).
  6. J. Bae, D.-W. Jeon, J.-H. Park, J. Kim, "High responsivity solar-blind metal-semiconductor-metal photodetector based on α-Ga2O3", J. Vac. Sci. Technol. A., 39, 033410 (2021). https://doi.org/10.1116/6.0000940
  7. P. J. Wellmann, "Power Electronic Semiconductor Materials for Automotive and Energy Saving Applications - SiC, GaN, Ga2O3, and Diamond, Zeitschrift Fur Anorg", Z Anorg Allg Chem., 643, 1312-1322 (2017). https://doi.org/10.1002/zaac.201700270
  8. L. K. Ping, D. D. Berhanuddin, A. K. Mondal, P. S. Menon, M. A. Mohamed, "Properties and perspectives of ultrawide bandgap Ga2O3 in optoelectronic applications", Chinese J. Phys., 73, 195-212 (2021). https://doi.org/10.1016/j.cjph.2021.06.015
  9. S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, M. A. Mastro, "A review of Ga2O3 materials, processing, and devices", Appl. Phys. Rev., 5 (2018).
  10. C. H. Lin, C. T. Lee, "Ga2O3-based solar-blind deep ultraviolet light-emitting diodes", J. Lumin., 224, 117326 (2020). https://doi.org/10.1016/j.jlumin.2020.117326
  11. H. Son, Y. J. Choi, S. K. Hong, J. H. Park, D. W. Jeon, "Reduction of dislocations in α-Ga2O3 epilayers grown by halide vapor-phase epitaxy on a conical frustum-patterned sapphire substrate", IUCrJ., 8, 462-467 (2021). https://doi.org/10.1107/S2052252521003389
  12. E. Ahmadi, Y. Oshima, "Materials issues and devices of α- And β-Ga2O3", J. Appl. Phys., 126 (2019). https://doi.org/10.1152/japplphysiol.00950.2009
  13. Y. Oshima, E. G. Villora, Y. Matsushita, S. Yamamoto, K. Shimamura, "Epitaxial growth of phase-pure ε-Ga2O3 by halide vapor phase epitaxy", J. Appl. Phys., 118, 2-7 (2015).
  14. Y. Oshima, K. Kawara, T. Shinohe, T. Hitora, M. Kasu, S. Fujita, "Epitaxial lateral overgrowth of α-Ga2O3 by halide vapor phase epitaxy", APL Mater., 7 (2019).
  15. A. N. Cha, S. Bang, H. Rho, H. Bae, D. W. Jeon, J. W. Ju, S. K. Hong, J. S. Ha, "Effects of nanoepitaxial lateral over-growth on growth of α-Ga2O3 by halide vapor phase epitaxy", Appl. Phys. Lett., 115, 1-6 (2019).
  16. C. R. K. Rao, D. C. Trivedi, "Chemical and electrochemical depositions of platinum group metals and their applications", Coord. Chem. Rev., 249, 613-631 (2005). https://doi.org/10.1016/j.ccr.2004.08.015
  17. S. Papadimitriou, S. Armyanov, E. Valova, A. Hubin, O. Steenhaut, E. Pavlidou, G. Kokkinidis, S. Sotiropoulos, "Methanol oxidation at Pt-Cu, Pt-Ni, and Pt-Co electrode coatings prepared by a galvanic replacement process", J. Phys. Chem. C., 114, 5217-5223 (2010). https://doi.org/10.1021/jp911568g
  18. H. G. Kim, H. K. Rho, A. Cha, M. J. Lee, J. S. Ha, "CNT-Ni-Fabric flexible substrate with high mechanical and electrical properties for next-generation wearable devices", J. Microelectron. Packag. Soc., 27(2), 39-44 (2020). https://doi.org/10.6117/KMEPS.2020.27.2.039
  19. J. Sudagar, R. Tamilarasan, U. Sanjith, R. Rajendran, R. Kumar, "Electroless Deposition of Nanolayered Metallic Coatings", Nanoscaled Film. Layers., (2017).
  20. N. Anzar, R. Hasan, M. Tyagi, N. Yadav, J. Narang, "Carbon nanotube - A review on Synthesis, Properties and plethora of applications in the field of biomedical science", Sensors Int., 1, 100003 (2020). https://doi.org/10.1016/j.sintl.2020.100003
  21. N. Karousis, N. Tagmatarchis, D. Tasis, "Current progress on the chemical modification of carbon nanotubes", Chem. Rev., 110, 5366-5397 (2010). https://doi.org/10.1021/cr100018g
  22. D. S. Su, S. Perathoner, G. Centi, "Nanocarbons for the development of advanced catalysts", Chem. Rev., 113, 5782-5816 (2013). https://doi.org/10.1021/cr300367d
  23. A. Jorio, R. Saito, 'Raman spectroscopy for carbon nanotube applications", J. Appl. Phys., 129 (2021). https://doi.org/10.1152/japplphysiol.00154.2016
  24. B. Scheibe, E. Borowiak-Palen, R.J. Kalenczuk, 'Oxidation and reduction of multiwalled carbon nanotubes - preparation and characterization', Mater. Charact., 61, 185-191 (2010). https://doi.org/10.1016/j.matchar.2009.11.008
  25. O. Guler, U. Alver, T. Varol, "Fabrication and characterization of novel layered materials produced by electroless plating and hot pressing', J. Alloys Compd., 835, 155278 (2020). https://doi.org/10.1016/j.jallcom.2020.155278
  26. Y. Oshima, E. G. Villora, K. Shimamura, "Halide vapor phase epitaxy of twin-free α-Ga2O3 on sapphire (0001) substrates", Appl. Phys. Express., 8 (2015).
  27. Y. Yao, S. Okur, L.A.M. Lyle, G.S. Tompa, T. Salagaj, N. Sbrockey, R.F. Davis, L.M. Porter, "Growth and characterization of α-, β-, and ϵ-phases of Ga2O3 using MOCVD and HVPE techniques", Mater. Res. Lett., 6, 268-275 (2018). https://doi.org/10.1080/21663831.2018.1443978
  28. Y. Chen, Z. Chen, J. Li, Y. Chen, C. Li, J. Zhan, T. Yu, X. Kang, F. Jiao, S. Li, G. Zhang, B. Shen, "A study of GaN nucleation and coalescence in the initial growth stages on nanoscale patterned sapphire substrates: Via MOCVD", CrystEngComm., 20, 6811-6820 (2018). https://doi.org/10.1039/C8CE01450G