• 제목/요약/키워드: Sub-surface crack

검색결과 108건 처리시간 0.02초

집중유도 교류 전위차법을 이용한 철도차량 차륜의 표면과 내부 결함 평가 (Evaluation of Surface and Sub-surface defects in Railway Wheel Using Induced Current Focused Potential Drops)

  • 이동형;권석진
    • 한국철도학회논문집
    • /
    • 제10권1호
    • /
    • pp.1-6
    • /
    • 2007
  • Railway wheels in service are regularly checked by ultrasonic testing, acoustic emission and eddy current testing method and so on. However, ultrasonic testing is sometimes inadequate for sensitively detecting the cracks in railway wheel which is mainly because of the fact of crack closure. Recently, many researchers have actively fried to improve precision for defect detection of railway wheel. The development of a nondestructive measurement tool for wheel defects and its use for the maintenance of railway wheels would be useful to prevent wheel failure. The induced current focusing potential drop(ICFPD) technique is a new non-destructive tasting technique that can detect defects in railway wheels by applying on electro-magnetic field and potential drops variation. In the present paper, the ICFPD technique is applied to the detection of surface and internal defects for railway wheels. To defect the defects for railway wheels, the sensor for ICFPD is optimized and the tests are carried out with respect to 4 surface defects and 6 internal defects each other. The results show that the surface crack depth of 0.5 mm and internal crack depth of 0.7 mm in wheel tread could be detected by using this method. The ICFPB method is useful to detect the defect that initiated in the tread of railway wheels

Micro-Crack Healing on Soda-Lime Glass by Chemical Strengthening

  • Kim, Hyeong-Jun;Lee, Sung-Min;Maeng, Jeehun;Kim, Dong-hwan
    • 한국세라믹학회지
    • /
    • 제56권5호
    • /
    • pp.483-488
    • /
    • 2019
  • We studied whether chemical strengthening can heal the flaws on soda-lime silicate glass. Artificial surface cracks were introduced on the glass by sharp indentation with various loads of 0.1 to 10 N. Then, the glasses with flaws were treated by ion-exchanging in KNO3 melt. The change in the dimension of the crack on glass was measured by a digital microscope and a scanning electron microscope. The chemical strengthening treatment enhances the strength of the glass with flaws. It is thought that the melted KNO3 not only forms the depth of the compressed layer of 7.5 ㎛, but also heals the cracks by infiltrating them and expanding the glass on both sides of the cracks. The critical length (2c) of the cracks on soda-lime glass that can be healed by chemical strengthening is 50 ㎛ or less.

A novel semi-empirical technique for improving API X70 pipeline steel fracture toughness test data

  • Mohammad Reza Movahedi;Sayyed Hojjat Hashemi
    • Steel and Composite Structures
    • /
    • 제51권4호
    • /
    • pp.351-361
    • /
    • 2024
  • Accurate measurement of KIC values for gas pipeline steels is important for assessing pipe safety using failure assessment diagrams. As direct measurement of KIC was impossible for the API X70 pipeline steel, multi-specimen fracture tests were conducted to measure JIC using three-point bend geometry. The J values were calculated from load-displacement (F-δ) plots, and the associated crack extensions were measured from the fracture surface of test specimens. Valid data points were found for the constructed J-Δa plot resulting in JIC=356kN/m. More data points were added analytically to the J-Δa plot to increase the number of data points without performing additional experiments for different J-Δa zones where test data was unavailable. Consequently, displacement (δ) and crack-growth (Δa) from multi-specimen tests (with small displacements) were used simultaneously, resulting in the variation of Δa-δ (crack growth law) and δ-Δa obtained for this steel. For new Δa values, corresponding δ values were first calculated from δ-Δa. Then, corresponding J values for the obtained δ values were calculated from the area under the F-δ record of a full-fractured specimen (with large displacement). Given Δa and J values for new data points, the developed J-Δa plot with extra data points yielded a satisfactory estimation of JIC=345kN/m with only a -3.1% error. This is promising and showed that the developed technique could ease the estimation of JIC significantly and reduce the time and cost of expensive extra fracture toughness tests.

선박용 알루미늄 합금재의 부식피로균열 진전특성과 그 억제에 관한 연구 (Corrosion Fatigue Cracking Propagation Characteristics and its Protection for the AL-Alloys of Shipbuilding)

  • 임우조;김수병;이진열
    • 수산해양기술연구
    • /
    • 제25권2호
    • /
    • pp.87-104
    • /
    • 1989
  • Recently, with the tendency of more lightening, high-strength and high-speed in the marine industries such as marine structures, ships and chemical plants, the use of the aluminium Alloy is rapidly enlarge and there occurs much interest in the study of corrosion fatigue crack characteristics. In this paper, the initiation of surface crack and the propagation characteristics on the base metal and weld zone of 5086-H116 Aluminium Alloy Plate which is one of the Al-Mg serious alloy(A5000serious) used most when building the special vessels, were investigated by the plane bending corrosion fatigue under the environments of marine, air and applying cathodic protection. The effects of various specific resistances on the initiation, propagation behavior of corrosion fatigue crack and corrosion fatigue life in the base metal and heat affected zone were examined and its corrosion sensitivity was quantitatively obtained. The effects of corrosion on the crack depth in relation to the uniform surface crack length were also investigated. Also, the structural, mechanical and electro-chemical characteristics of the metal at the weld zone were inspected to verify the reasons of crack propagation behavior in the corrosion fatigue fracture. In addition, the effect of cathodic protection in the fracture surface of weld zone was examined fractographically by Scanning Electron Microscope(S.E.M.). The main results obtained are as follows; (1) The initial corrosion fatigue crack sensitibity under specific resistance of 25Ω.cm% show 2.22 in the base metal and 19.6 in the HEZ, and the sensitivity decreases as specific resistance increases (2) By removing reinforcement of weldment, the initiation and propagation of corrosion crack in the HAZ are delayed, and corrosion fatigue life increases. (3) As specific resistance decreases, the sensitivity difference of corrosion fatigue life in the base metal and HAZ is more susceptible than that of intial corrosion fatigue crack. (4) Experimental constant, m(Paris' rule) in the marine environment is in the range of about 3.69 to 4.26, and as specific resistance increases, thje magnitude of experimental constant, also increases and the effect by corrosion decreases. (5) Comparing surface crack length with crack depth, the crack depth toward the thickness of specimen in air is more deeply propagated than that in corrosion environment. (6) The propagation particulars of corrosion fatigue crack for HAZ under initial stress intensity factor range of $\Delta$k sub(li) =27.2kgf.mm super(-3/2) and stress ratio of R=0 shows the retardative phenomenon of crack propagation by the plastic deformation at crack tip. (7) Number of stress cycles to corrosion fatigue crack initiation of the base metal and the welding heat affected zone are delayed by the cathodic protection under the natural sea water. The cathodic protection effect for corrosion fatigue crack initiation is eminent when the protection potential is -1100 mV(SCE). (8) When the protection potential E=-1100 mV(SCE), the corrosion fatigue crack propagation of welding heat affected zone is more rapid than that of the case without protection, because of the microfissure caused by welding heat cycle.

  • PDF

졸-겔법에 의한 유·무기 TiO2-SiO2 혼성(Hybrid)코팅재료의 제조 및 부식 특성 평가 (Preparation of TiO2-SiO2 Organic-Inorganic Hybrid Coating Material by Sol-gel Method and Evaluation of Corrosion Characteristics)

  • 노정준;맹완영
    • Corrosion Science and Technology
    • /
    • 제14권2호
    • /
    • pp.64-75
    • /
    • 2015
  • Single $TiO_2$ coating prepared by sol-gel process usually experiences cracks in coating layer. In order to prevent cracks, an inorganic-organic hybrid $TiO_2-SiO_2$ coating was synthesized by combining precursors with an organic functional group. Five different coatings with various ratios of (1:8, 1:4, 1:1, 1:0.25 and 1:0.125) titanium alkoxide (TBOT, Tetrabutylorthotitanate) to organo-alkoxysilane (MAPTS, ${\gamma}$-Methacryloxy propyltrimethoxysilane) on carbon steel substrate were made by sol-gel dip coating. The prepared coatings were analyzed to study the coating properties (surface crack, thickness, composition) by scanning electron microscope (SEM), focused ion beam (FIB), and Fourier transform infrared spectroscopy (FT-IR). Potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were also performed to evaluate the corrosion characteristics of the coatings. Crack free $TiO_2-SiO_2$ hybrid coatings were prepared with the optimization of the ratio of TBOT to MAPTS. The corrosion rates were significantly decreased in the coatings for the optimized precursor ratio without cracks.

소다석회유리의 CO2 레이저 스크라이빙 가공 (CO2 Laser Scribing Process of Soda Lime Glass)

  • 강승구;신중한
    • 한국기계가공학회지
    • /
    • 제18권5호
    • /
    • pp.74-81
    • /
    • 2019
  • This study reports the CW $CO_2$ laser scribing of soda lime glass. In this study, scribing experiments are carried out at different laser powers, scan speeds, and focal positions to investigate the effect of the process parameters on the interaction characteristics between a laser beam and glass. In particular, the interaction characteristics are analyzed and described with the input laser energy per unit length. According to the experimental results, the damage threshold for the glass surface was found to exist between 0.072 and 0.08 J/mm. The input laser energy in this region induced partial melting of the surface and grain-shaped cracks. These cracks tended to increase as the input laser energy increased. At the laser input energy larger than 1 J/mm, a huge crack propagating along the scan direction was produced, and the volume below the scribed area was fully melted. The growth of this crack finally resulted in the complete cutting of the glass at the input laser energy above 8 J/mm. It was found that both the width and depth of the scribed line increased with increasing input laser energy. For the beam focusing at the rear surface, the width of the scribed line varied irregularly. This could be ascribed to the increased asymmetry of the beam intensity distribution when the laser beam was focused at the rear surface. Under this condition, a large burr was only produced on one side of the scribed line.

텅스텐 카바이드 공구를 사용한 앤드밀 가공에서 Si3n4-hBN 머시너블 세라믹스의 표면특성과 공구마멸 (Surface Properties and Tool Wear of Si3n4-hBN Machinable Ceramics in Endmill Machining using Tungsten Carbide Tool)

  • 장성민;조명우
    • 한국기계가공학회지
    • /
    • 제3권1호
    • /
    • pp.15-21
    • /
    • 2004
  • The machining process of ceramics can be characterized by cracking and brittle fracture. In the machining of ceramics, edge chipping and crack propagation are the principal reasons to cause surface integrity deterioration. Such phenomenon can cause not only poor dimensional and geometric accuracy, but also possible failure of the ceramic parts. Thus, traditional ceramics are very difficult-to-cut materials. To overcome such problems, in this paper, h-BN powder, which gives good cutting property, is added for the fabrication of machinable ceramics by volume of 5, 10, 15, 20, 25 and 30%. The objectives of this paper is to evaluate the fracture phenomenon of the tungsten carbide tool and the variation of surface integrity of the manufactured machinable ceramics under various cutting conditions during end mill machining With CNC machining center.

  • PDF

용융 알루미늄 도금된 절탄기 강재 튜브의 고상입자 침식 특성 (Solid Particle Erosion Properties of Hot-Dip Aluminized Economizer Steel Tube)

  • 박일초;한민수
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.384-390
    • /
    • 2021
  • In this paper, durability evaluation and surface damage mechanism were investigated through solid particle erosion (SPE) test after applying hot-dip aluminizing (HDA) technology for the purpose of maintenance of marine economizer tube. Damaged surface shape was analyzed using SEM and 3D microscope. Compositional changes and microstructure of the HDA layer were analyzed through EDS and XRD. Durability was evaluated by analyzing weight loss and surface damage depth after SPE. HDA was confirmed to have a two-layer structure of Al and Al5Fe2. HDA+HT was made into a single alloy layer of Al5Fe2 by diffusion treatment. In the microstructure of HDA+HT, void and crack defect were induced during the crystal phase transformation process. The SPE damage mechanism depends on material properties. Plastic deformation occurred in the substrate and HDA due to ductility, whereas weight loss due to brittleness occurred significantly in HDA+HT. As a result, the substrate and HDA showed better SPE resistance than HDA+HT.

졸-겔 공정으로 합성된 코디어라이트를 이용하여 알루미나의 표면개질 (Surface Modification of Alumina Ceramic with Mg2Al4Si5O18 Glass by a Sol-Gel Process)

  • 최필규;추민철;배동식
    • 한국재료학회지
    • /
    • 제24권1호
    • /
    • pp.48-52
    • /
    • 2014
  • The Mg-enriched magnesium aluminum silicate (MAS) glass is known for its higher mechanical strength and chemical resistance. Among such glasses, cordierite ($Mg_2Al_4Si_5O_{18}$) is well known to have a low thermal expansion and low melting point. Polycrystalline engineering ceramics such as alumina can be strengthened by a surface modification with low thermal expansion materials. The present study involves the synthesis of cordierite by a sol-gel process and investigates the effect of glass penetration on the surface of alumina. The cordierite powders were prepared from $Al(OC_3H_7)_3$, $Mg(OC_2H_5)_2$ and tetraethyl orthosilicate by hydrolysis and condensation reaction. The cordierite powders were characterized by X-ray diffraction (XRD, Rigaku), scanning electron microscope (SEM, JEOL: JSM-5610), energy dispersive spectroscopy (EDS, JEOL: JSM-5610), and universal testing machine (UTM, INSTRON). The X-ray diffraction patterns showed that the synthesized particles were ${\mu}$-cordierite calcined at $1100^{\circ}C$ for 1 h. The shape of synthesized cordierite was changed from ${\mu}$-cordierite to ${\alpha}$-cordierite with increasing calcination temperature. Synthesized cordierite was used for surface modification of alumina. Cordierite powders penetrated deeply into the alumina sample along grain boundaries with increasing temperature. The results of surface modification tests showed that the strength of the prepared alumina sample increased after surface modification. The strength of a surface modified with synthesized cordierite increased the most, to about 134.6MPa.

표면처리된 탄화규소강화 에폭시 복합재료의 GIIC 특성 (A Study on Critical Strain Energy Release Rate Mode II of Chemically Treated SiC-filled Epoxy Composites)

  • 박수진;오진석
    • 접착 및 계면
    • /
    • 제6권4호
    • /
    • pp.1-6
    • /
    • 2005
  • 본 실험에서는 화학적 표면처리된 탄화규소의 첨가가 탄화규소(SiC)/에폭시 복합재료의 critical strain energy release rate mode II ($G_{IIC}$) 특성에 미치는 영향에 대하여 알아보았으며, 표면처리된 SiC의 표면특성은 산 염기도와 FT-IR을 사용하여 알아보았다. 또한 복합재료의 기계적 계면물성은 $G_{IIC}$를 통하여 알아보았다. 실험결과, 산성 용액으로 표면처리한 SiC (A-SiC)의 표면 산도가 염기성(B-SiC) 또는 표면처리 하지 않은 SiC (V-SiC)보다 높으며, $G_{IIC}$의 크랙저항 특성은 A-SiC가 향상되었는데, 이러한 결과는 SiC 충전재와 에폭시 수지간의 분자간 계면결합력의 향상 때문으로 판단된다.

  • PDF