DOI QR코드

DOI QR Code

Preparation of TiO2-SiO2 Organic-Inorganic Hybrid Coating Material by Sol-gel Method and Evaluation of Corrosion Characteristics

졸-겔법에 의한 유·무기 TiO2-SiO2 혼성(Hybrid)코팅재료의 제조 및 부식 특성 평가

  • Noh, J.J. (Department of Material Engineering, Korea University of Technology and Education) ;
  • Maeng, W.Y. (Department of Nuclear Material, Korea Atomic Energy Research Institute)
  • 노정준 (한국기술교육대학교 신소재공학과) ;
  • 맹완영 (한국원자력연구원 원자력재료개발부)
  • Received : 2015.01.30
  • Accepted : 2015.04.29
  • Published : 2015.04.30

Abstract

Single $TiO_2$ coating prepared by sol-gel process usually experiences cracks in coating layer. In order to prevent cracks, an inorganic-organic hybrid $TiO_2-SiO_2$ coating was synthesized by combining precursors with an organic functional group. Five different coatings with various ratios of (1:8, 1:4, 1:1, 1:0.25 and 1:0.125) titanium alkoxide (TBOT, Tetrabutylorthotitanate) to organo-alkoxysilane (MAPTS, ${\gamma}$-Methacryloxy propyltrimethoxysilane) on carbon steel substrate were made by sol-gel dip coating. The prepared coatings were analyzed to study the coating properties (surface crack, thickness, composition) by scanning electron microscope (SEM), focused ion beam (FIB), and Fourier transform infrared spectroscopy (FT-IR). Potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were also performed to evaluate the corrosion characteristics of the coatings. Crack free $TiO_2-SiO_2$ hybrid coatings were prepared with the optimization of the ratio of TBOT to MAPTS. The corrosion rates were significantly decreased in the coatings for the optimized precursor ratio without cracks.

Keywords

References

  1. B. S. Bae, Polym. Sci. Technol., 12, 716 (2001).
  2. S. H. Jang, Polym. Sci. Technol., 12, 676 (2001).
  3. M. J Han, J. Y. Mang and J. Y. Seo, Polym. Korea, 34, 405 (2010).
  4. C. M. Whang, C. S. Yeo and Y. H. Kim, Bull. Korean Chem. Soc., 22, 1366 (2001).
  5. D. Wang and G. P. Bierwagen, Prog. Org. coat., 64, 327 (2010).
  6. S. Islam, JSST, 68, 162 (2013).
  7. M. Nowacka, K. Siwinska-Stefanka and T. Jesionowski, Colloid Polym. Sci., 291, 603 (2013). https://doi.org/10.1007/s00396-012-2762-3
  8. L. Jianguo, G. Gaoping and Y. Chuanwei, Surf. Coating Tech., 200, 4967 (2006). https://doi.org/10.1016/j.surfcoat.2005.05.012
  9. Y. G. Kim. Master's Thesis, p. 18, Inha University (2004).
  10. K. C. Ahn, J. K. Lee, H. G. Kim and K. S. No, J. Kor. Ceram. Soc., 29, 216 (1992).
  11. S. K. Oh, J. S. Chung, B. S. Lee and K. C. Song, Korean Chem. Eng. Res., 46, 274 (2008).
  12. S. H. Lee. Master's Thesis, p. 35, Kyung Hee University (2008).
  13. D. H. Son, Y. Y. Lee, S. J. Kim, S. S. Hong, G. D. Lee, and S. S. Park, Appl. Chem. Eng., 22, 691 (2011).
  14. D. H. Son, D.-S. Kim, S.-H. Lee, S. H. Kim, G.-D. Lee and S. S. Park, Appl. Chem. Eng., 23, 53 (2012).
  15. J. Strunk, W. C. Vining and A. T. Bell, J. Phys. chem., 114, 16937 (2010).
  16. V. A. Zeitler and C. A. Brown, J. Phys. chem., 61, 1174 (1957). https://doi.org/10.1021/j150555a010
  17. Y. S. Song, Master's Thesis, p. 19, Hanyang University (2003).
  18. A. Pirson, A. Mohsine, P. Marchot, B. Michaux, O. V. Cantfort, J. P. Pirard, JSST, 4, 179 (1995).
  19. C. F. Song, M. K. Lu, P. Yang, D. Xu, D. R. Yuan, Thin Solid Films, 413, 155 (2002). https://doi.org/10.1016/S0040-6090(02)00440-6
  20. E. E. Stansbury, Fundamental of Electrochemical Corrosion, p. 200, ASM International, OH (2000).
  21. B. E. Wilde, F. G. Hodge, Electrochim. Acta, l14, 619 (1969).
  22. G. S. L. Gray and R. B. Appleman, J. Phys. Chem. Lett., 20, 66 (2003).
  23. R. B. Vignesh, T. N. J. I. Edison and M. G. Sethuraman, J. Mater. Sci. Technol., 30, 814 (2014). https://doi.org/10.1016/j.jmst.2013.11.001
  24. C. H. Tsai and F. Mansfeld, Corrosion, 40, 726 (1993).

Cited by

  1. Research Progress on Titanium-Containing Organic-Inorganic Hybrid Protective Coatings pp.1793-6667, 2019, https://doi.org/10.1142/S0218625X19300028