DOI QR코드

DOI QR Code

CO2 Laser Scribing Process of Soda Lime Glass

소다석회유리의 CO2 레이저 스크라이빙 가공

  • Kang, Seung-Gu (Department of Mechanical and Automotive Engineering, Kongju National UNIV.) ;
  • Shin, Joong-Han (Department of Mechanical and Automotive Engineering, Kongju National UNIV.)
  • 강승구 (국립공주대학교 기계자동차공학부) ;
  • 신중한 (국립공주대학교 기계자동차공학부)
  • Received : 2019.03.11
  • Accepted : 2019.04.30
  • Published : 2019.05.31

Abstract

This study reports the CW $CO_2$ laser scribing of soda lime glass. In this study, scribing experiments are carried out at different laser powers, scan speeds, and focal positions to investigate the effect of the process parameters on the interaction characteristics between a laser beam and glass. In particular, the interaction characteristics are analyzed and described with the input laser energy per unit length. According to the experimental results, the damage threshold for the glass surface was found to exist between 0.072 and 0.08 J/mm. The input laser energy in this region induced partial melting of the surface and grain-shaped cracks. These cracks tended to increase as the input laser energy increased. At the laser input energy larger than 1 J/mm, a huge crack propagating along the scan direction was produced, and the volume below the scribed area was fully melted. The growth of this crack finally resulted in the complete cutting of the glass at the input laser energy above 8 J/mm. It was found that both the width and depth of the scribed line increased with increasing input laser energy. For the beam focusing at the rear surface, the width of the scribed line varied irregularly. This could be ascribed to the increased asymmetry of the beam intensity distribution when the laser beam was focused at the rear surface. Under this condition, a large burr was only produced on one side of the scribed line.

Keywords

References

  1. Kondrashov, V. I., Shitova, L. A., Litvinov, V. A. and Surkov, V. V., “Characteristics of cutting parameters and their effect on the glass edge quality,” Glass Ceram+, Vol. 58, No. 9-10, pp. 303-305, 2001. https://doi.org/10.1023/A:1013926908241
  2. Pan, C. T., Hsieh, C. C., Su, C. Y. and Liu, Z. S., “Study of cutting quality for TFT-LCD glass substrate,” Int. J. Adv. Manuf. Tech., Vol. 39, No. 11, pp. 1071-1079, 2008. https://doi.org/10.1007/s00170-007-1293-4
  3. Zhou, M., Ngoi, B. K. A., Yusoff, M. N. and Wang, X. J., “Tool wear and surface finish in diamond cutting of optical glass,” J. Mater. Process. Tech., Vol. 174, No. 1-3, pp. 29-33, 2006. https://doi.org/10.1016/j.jmatprotec.2005.02.248
  4. Prakash, E. S., Sadashivappa, K., Joseph, V. and Singaperumal, M., “Nonconventional cutting of plate glass using hot air jet: experimental studies,” Mechatronics, Vol. 11, No. 6, pp. 595-615, 2001. https://doi.org/10.1016/S0957-4158(00)00033-7
  5. Yuan, F., Johnson, J. A., Allred, D. D. and Todd, R. H., “Waterjet cutting of cross-linked glass,” J. Vac. Sci. Technol. A, Vol. 13, No. 1, pp. 136-139, 1995. https://doi.org/10.1116/1.579427
  6. Luna, J. S., Machorro, R., Camacho, J., Luna, E. and Nunez, J., “Waterjet: A promising method for cutting optical glass,” Appl. Optics, Vol. 45, No. 15, pp. 3477-3481, 2006. https://doi.org/10.1364/AO.45.003477
  7. Rastogi, V., Chaurasia, S. and Munda, D. S., "Laser induced damage studies in borosilicate glass using nanosecond and sub nanosecond pulses," J. Non-Cryst. Solids, Vol. 463, pp. 138-147, 2017. https://doi.org/10.1016/j.jnoncrysol.2017.03.006
  8. Ahn, S. H., Choi, J. Y., Noh, J. H. and Cho, S. H., "High aspect ratio nanoholes in glass generated by femtosecond laser pulses with picosecond intervals," Opt. Laser. Eng., Vol. 101, pp. 85-88, 2018. https://doi.org/10.1016/j.optlaseng.2017.10.002
  9. Beg, F. N., Bell, A. R., Dangor, A. E., Danson, C. N., Fews, A. P., Glinsky, M. E., Hammel, B. A., Lee, P., Norreys, P. A. and Tatarakis, M., "A study of picosecond lsaer-solid interactions up to $10^{19}$ W/cm$^2$," Phys. Plasmas, Vol. 4, No. 2, pp. 447-457, 1997. https://doi.org/10.1063/1.872103
  10. Wlodarczyk, K. L., Brunton, A., Rumsby, P. and Hand, D. P., “Picosecond laser cutting and drilling of thin flex glass,” Opt. Laser. Eng., Vol. 78, No. 64-74, pp. 64-74, 2016. https://doi.org/10.1016/j.optlaseng.2015.10.001
  11. Yang, S. Y., Choi, S. D., Choi, M. S. and Jun, J. M., “Characteristics of Surface Hardened Press Die Materials by $CO_2$ Laser Beam Irradiation,” J. Korean Soc. Manuf. Process. Eng., Vol. 10, No. 1, pp. 31-37, 2011.
  12. Delgado, T. and Nieto, D., "Fabrication of microlens arrays on soda-lime glass using a laser direct-write technique and a thermal treatment assisted by a $CO_2$ laser," Opt. Laser. Eng., Vol. 73, pp. 1-6, 2015. https://doi.org/10.1016/j.optlaseng.2015.03.026
  13. Lumley R. M., “Controlled separation of brittle materials using a laser,” Am. Ceram. Soc. Bull., Vol. 48, No. 9, pp. 850-854, 1969.
  14. Sugioka, K. and Cheng, Y., "Ultrafast lasers-reliable tools for advanced materials processing," LIGHT-SCI. APPL., Vol. 3, p. e149, 2014. https://doi.org/10.1038/lsa.2014.30
  15. Kim, J. S., Ryu, B. S., Kim, K. B., Song, K. H., Kim, B. C. and Cho, M. W., “Development of Internal Laser Scribing System for Cutting of Sapphire Wafer in LED Chip Fabrication Processes,” J. Korean Soc. Manuf. Process. Eng., Vol. 14, No. 6, pp. 104-110, 2015. https://doi.org/10.14775/ksmpe.2015.14.6.104
  16. Shin, B. S. and Lee, J. H., “Basic Experimental Investgations to UV Laser Micro-Machining of Nano-Porous Alumina Creamic Material,” J. Korean Soc. Manuf. Process. Eng., Vol. 11, No. 1, pp. 62-67, 2012.
  17. Shin, J. H., "Investigation of the surface morphology in glass scribing with a UV picosecond laser," Opt. Laser. Technol., Vol. 111, pp. 307-314, 2019. https://doi.org/10.1016/j.optlastec.2018.10.008
  18. Allcock, G., Dyer, P. E., Elliner, G. and Snelling, H. V., "Experimental observations and analysis of $CO_2$ laser induced microcracking of glass," J. Appl. Phys., Vol. 78, pp. 7295-7303, 1995. https://doi.org/10.1063/1.360378
  19. Zhimalov, A. B. , Solinov, V. F., Kondratenko, V. S. and Kaplina, T. V., “Laser cutting of float glass during production,” Glass Ceram+, Vol. 63, No. 9-10, pp. 319-321, 2006. https://doi.org/10.1007/s10717-006-0112-y
  20. Tsai, C. H. and Huang, B. W., “Diamond scribing and laser breaking for LCD glass substrates,” J. Mater. Process. Techol., Vol. 198, No. 1, pp. 350-358, 2008. https://doi.org/10.1016/j.jmatprotec.2007.07.017
  21. Mishra, S., Sridhara, N., Mitra, A., Yougandar, B., Dash, S. K., Agarwal, S. and Dey, A., "$CO_2$ laser cutting of ultra thin(75 ${\mu}m$) glass based rigid optical solar reflector(OSR) for space craft application," Opt. Laser. Eng., Vol. 90, pp. 128-138, 2017. https://doi.org/10.1016/j.optlaseng.2016.10.007
  22. Rubin, M., “Optical properties of soda lime silica glasses,” Sol. Energ. Mater., Vol. 12, No. 4, pp. 275-288, 1985. https://doi.org/10.1016/0165-1633(85)90052-8
  23. Cvecek, K., Miyamoto, I., and Schmidt, M., “Gas bubble formation in fused silica generated by ultra-short laser pulses,” Opt. Express, Vol. 22, No. 13, pp. 15877-15893, 2014. https://doi.org/10.1364/OE.22.015877

Cited by

  1. 초단 펄스레이저 어블레이션에 의한 스테인리스강 표면의 오염산화막 제거 특성 vol.19, pp.10, 2019, https://doi.org/10.14775/ksmpe.2020.19.10.105