• 제목/요약/키워드: Sub-Resonance

Search Result 507, Processing Time 0.024 seconds

Nuclear Magnetic Resonance of a Layered Organic-Inorganic Hybrid System (C8H17NH3)2SnCl6

  • Lee, Kyu Won;Lee, Cheol Eui
    • Journal of Magnetics
    • /
    • v.9 no.1
    • /
    • pp.1-4
    • /
    • 2004
  • Three successive phase transitions in bis-n-octhylammonium hexachlorostannate, $(n-C_8H_{17}NH_3)_2SnCl_6$, were studied by means of the ^1H nuclear magnetic resonance linewidth and spin-lattice relaxation measurements. Unlike the compounds with longer hydrocarbon chains, the order-disorder and conformational nature were found to coexist in the phase transitions.

Thermodynamic and Physical Properties of (NH4)2MnCl4·2H2O by Nuclear Magnetic Resonance Relaxation Times

  • Kim, Yoo Young
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.2
    • /
    • pp.40-45
    • /
    • 2019
  • The phase transition temperatures and thermodynamic properties of $(NH_4)_2MnCl_4{\cdot}2H_2O$ grown by the slow evaporation method were studied using differential scanning calorimetry and thermogravimetric analysis. A structural phase transition occurred at temperature $T_{C1}$ (=264 K), whereas the changes at $T_{C2}$ (=460 K) and $T_{C3}$ (=475 K) seemed to be chemical changes caused by thermal decomposition. In addition, the chemical shift and the spin-lattice relaxation time $T_{1{\rho}}$ were investigated using $^1H$ magic-angle spinning nuclear magnetic resonance (MAS NMR), in order to understand the role of $NH_4{^+}$ and $H_2O$. The rise in $T_{1{\rho}}$ with temperature was related to variations in the symmetry of the surrounding $H_2O$ and $NH_4{^+}$.

Study of molecular motion by 1H NMR relaxation in ferroelectric LiH3(SeO3)2, Li2SO4·H2O, and LiN2H5SO4 single crystals

  • Park, Sung Soo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • The proton NMR line widths and spin-lattice relaxation rates, $T_1^{-1}$, of ferroelectric $LiH_3(SeO_3)_2$, $Li_2SO_4{\cdot}H_2O$, and $LiN_2H_5SO_4$ single crystals were measured as a function of temperature. The line width measurements reveal rigid lattice behavior of all the crystals at low temperatures and line narrowing due to molecular motion at higher temperatures. The temperature dependences of the proton $T_1^{-1}$ for these crystals exhibit maxima, which are attributed to the effects of molecular motion by the Bloembergen - Purcell - Pound theory. The activation energies for the molecular motions of $^1H$ in these crystals were obtained. From these analysis, $^1H$ in $LiH_3(SeO_3)_2$ undergoes molecular motion more easily than $^1H$ in $LiN_2H_5SO_4$ and $Li_2SO_4{\cdot}H_2O$ crystals.

Design and Vibration Reduction Method of Sub-Resonance in Asymmetric Type Optical Pick-up Actuator (FP코일을 이용한 비대칭형 광픽업 액츄에이터의 설계 및 부공진의 진동저감 대책)

  • 정호섭;오관영;유익형
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.160-165
    • /
    • 1998
  • The sub-resonance modes can be easily excited by the assembling tolerance in the asymmetric type optical pick-up actuators, compared with the symmetric type. In this paper, we propose the novel method for reducing the vibration due to the sub-resonance modes where undesirable modes can be decreased by adding the damping, which can be achieved by increasing the flexibility of holder PCB, against to the sub-resonance modes. Using the finite element method, the change of mode shapes is investigated as the shape of holder PCB is modified. Experimental results support that the proposed method reduces remarkably the vibration of sub-resonance modes of the optical pick-up actuator.

  • PDF

Design and Vibration Reduction Method of Sub-Resonance in Optical Pick-Up Actuator Using the Fine Pattern Coil (FP 코일형 광픽업 액츄에이터의 설계 및 부공진의 진동저감 대책)

  • 정호섭;오관영;유익형
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.643-653
    • /
    • 1998
  • The sub-resonance modes can be easily excited by the assembling tolerance in the asymmetric type optical pick-up actuators, compared with the symmetric type. In this paper, we propose the novel method for reducing the vibration due to the sub-resonance modes whose amplitude can be decreased by adding the damper and increasing the flexibility of holder PCB. Using the finite element method, the change of mode shapes is investigated as the shape of holder PCB is modified. Experimental results support that the propopsed method reduces remarkably the vibration of sub-resonance modes of the optical pick-up actuator.

  • PDF

Magnetic dependence of cyclotron resonance in the electron-piezoelectric phonon interacting materials

  • Park, Jung-Il;Sug, Joung-Young
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.1
    • /
    • pp.16-22
    • /
    • 2020
  • Based on quantum transport theory, we investigated theoretically the magnetic field dependence of the quantum optical transition of quasi 2-dimensional Landau splitting system, in CdS and ZnO Through the analysis of the current work, we found the increasing properties of the cyclotron resonance line-profiles (CRLPs) which show the absorption power and the cyclotron resonance line-widths (CRLWs) with the magnetic field in CdS and ZnO We also found that that CRLWs, γtotal(B) of CdS < γtotal(B) of ZnO in the magnetic field region B < 15 Tesla.

Relationship Between the Resonance Frequency and QTS for Microspeaker (마이크로스피커에서 공명진동수와 QTS 사이의 연관성)

  • Oh, Sei-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.403-409
    • /
    • 2011
  • Micro speakers are used to reproduce sound in small electric and information and communications devices, such as cellular phones, PMPs, and MP3 players. The acoustical properties and sound quality, which are changed due to the decreased size of the speaker, are often adjusted varying the type and thickness of the diaphragm. The most widely used diaphragm material is thin polymer. It was previously reported by the author of this paper that the resonance frequency of a micro speaker is changed by the type and thickness of a polymer diaphragm. In this paper, the frequency response near the resonance frequency of a micro speaker was studied as functions of the type and thickness of the polymer diaphragm. While $R_{max}$ and $R_{DC}$ were affected by the type and thickness, an analysis of the electrical impedance curve revealed that $R_o(= R_{max}/R_{DC})$ and ${\Delta}f$ were not changed. Thus, $Q_{TS}$ which was function of $R_o$, ${\Delta}f$, and the resonance frequency, is only related to the resonance frequency. The increase of the resonance frequency led to a proportional rise of $Q_{TS}$. The change of the frequency response near the resonance frequency was not dependent on the type or thickness of the polymer diaphragm, but was affected by the resonance frequency.

133Cs Nuclear Magnetic Resonance Relaxation Study of the Phase Transition of Cs2MnCl4·2H2O Single Crystals

  • Heo, Cheol;Lim, Ae-Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.14 no.2
    • /
    • pp.76-87
    • /
    • 2010
  • The structural phase transition of $Cs_2MnCl_4{\cdot}2H_2O$ single crystals was investigated by determining the $^{133}Cs$ spin-lattice relaxation time $T_1$. The number of resonance lines in the $^{133}Cs$ spectrum changes from seven to one near 375 K, which means that above 375 K the Cs sites are symmetric. Further, the $T_1$ of the $^{133}Cs$ nucleus undergoes a significant change near 375 K, which coincides with the change in the splitting of the $^{133}Cs$ resonance lines. The change in $T_1$ near $T_C$ is related to the loss of $H_2O$, and means that the forms of the octahedra of water molecules surrounding $Cs^+$ are disrupted.

Investigation on structural symmetry of CsCoCl3·2H2O crystals by magic-angle spinning 1H and static 133Cs nuclear magnetic resonance

  • Park, Sang Hyeon;Jang, Du Chang;Jeon, Hara;Gyeong, Oh Yi;Lim, Ae Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.26 no.1
    • /
    • pp.10-16
    • /
    • 2022
  • The phase transition temperatures of CsCoCl3·2H2O crystals are investigated via differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Three endothermic peaks at temperatures of 370 K (=TC1), 390 K (=TC2), and 416 K (=TC3) were observed for phase transitions from CsCoCl3·2H2O to CsCoCl3·1.5H2O, to CsCoCl3·H2O, and then to CsCoCl3·0.5H2O, respectively. In addition, the spin-lattice relaxation time T in the rotating frame and T1 in the laboratory frame as well as changes in chemical shifts for 1H and 133Cs near TC1 were found to be temperature dependent. Our analyses results indicated that the changes of chemical shifts, T, and T1 are associated with structural phase transitions near temperature TC1. The changes of chemical shifts, T, and T1 near TC1 were associated with structural phase transitions, owing to the changes in the symmetry of the structure formed of H2O and Cs+ ions. Consequently, the structural symmetry in CsCoCl3·2H2O crystals based on temperature is discussed by the environments of their H and Cs nuclei.

Paraelectric-Ferroelectric Phase Transition of (NH4)2SO4 Single Crystals by 14N NMR

  • Lim, Ae Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.2
    • /
    • pp.63-66
    • /
    • 2017
  • The $^{14}N$ NMR spectra for $(NH_4)_2SO_4$ crystals were obtained near the phase transition temperature $T_C=223K$, and were found to precisely reflect the symmetry change in the crystal at this first-order phase transition. Changes in the resonance frequencies near $T_C$ were attributed to the structural phase transition. In the ferroelectric and paraelectric phases, two inequivalent NH4 groups were distinguished in the $^{14}N$ NMR spectra. The two types, $NH_4$(1) and $NH_4$(2), have slightly different local environments. Consequently, we conclude that the phase transition is caused by the change in the environment of the $^{14}N$ nuclei in the $NH_4$ groups, rather than by the $SO_4$ groups.