DOI QR코드

DOI QR Code

Study of molecular motion by 1H NMR relaxation in ferroelectric LiH3(SeO3)2, Li2SO4·H2O, and LiN2H5SO4 single crystals

  • Received : 2016.01.15
  • Accepted : 2016.02.19
  • Published : 2016.03.20

Abstract

The proton NMR line widths and spin-lattice relaxation rates, $T_1^{-1}$, of ferroelectric $LiH_3(SeO_3)_2$, $Li_2SO_4{\cdot}H_2O$, and $LiN_2H_5SO_4$ single crystals were measured as a function of temperature. The line width measurements reveal rigid lattice behavior of all the crystals at low temperatures and line narrowing due to molecular motion at higher temperatures. The temperature dependences of the proton $T_1^{-1}$ for these crystals exhibit maxima, which are attributed to the effects of molecular motion by the Bloembergen - Purcell - Pound theory. The activation energies for the molecular motions of $^1H$ in these crystals were obtained. From these analysis, $^1H$ in $LiH_3(SeO_3)_2$ undergoes molecular motion more easily than $^1H$ in $LiN_2H_5SO_4$ and $Li_2SO_4{\cdot}H_2O$ crystals.

Keywords

References

  1. P. Colomban and A. Novak, Anhydrous Materials, Oxonium Perchlorate, Acid Phosphates, Arsenates, Sulphates and Selenates in Proton Conductors, Cambridge University Press, Great Britain. 1992.
  2. R. Kubo and K. Tomita, J. Phys. Soc. Japan. 9, 888 (1954) https://doi.org/10.1143/JPSJ.9.888
  3. G. Burns, Phys. Rev. 123, 64 (1961) https://doi.org/10.1103/PhysRev.123.64
  4. S. R. Miller, R. Blinic, M. Brenman, and J. S. Waugh, Phys. Rev. 126, 528 (1962) https://doi.org/10.1103/PhysRev.126.528
  5. A. R. Lim, J. K. Jung, and S.Y. Jeong, Solid State Commun. 118, 453 (2001) https://doi.org/10.1016/S0038-1098(01)00145-4
  6. J. L. Koenig, In Spectroscopy of Polymers, Elsevier Science Inc., New York, (1999)
  7. N. Bloembergen, E. M. Purcell and R. V. Pound, Phys. Rev. 73, 679 (1948) https://doi.org/10.1103/PhysRev.73.679
  8. A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, Oxford, (1989)
  9. A. R. Lim and K.-S. Lee, J. Kor. Mag. Reson. Soc. 19, 29 (2015) https://doi.org/10.6564/JKMRS.2015.19.1.029
  10. S. J. Lee and A.R. Lim, J. Kor. Mag. Reson. Soc. 19, 18 (2015) https://doi.org/10.6564/JKMRS.2015.19.1.018
  11. A. A. Silvidi, J. Chem. Phys. 48, 1402 (1968) https://doi.org/10.1063/1.1668814
  12. C. P. Slicher, Principles of Magnetic Resonance, Springer-Verlag, New York (1989)
  13. B. Cowan, Nuclear Magnetic Resonance and Relaxation, Cambridge University Press, Cambridge, (1997)
  14. R. Ikeda and C. A. McDowell, Molecular Physics 25, 1217 (1973) https://doi.org/10.1080/00268977300101051
  15. J. A. Ripmeester and N. S. Dalal, Phys. Rev. B. 18, 3739 (1978) https://doi.org/10.1103/PhysRevB.18.3739
  16. D. F. Holcomb and B. Pedersen, J. Chem. Phys. 36, 3270 (1962) https://doi.org/10.1063/1.1732455
  17. J. D. Cuthbert and H. E. Petch, Can. J. Phys. 41, 1629 (1963) https://doi.org/10.1139/p63-166
  18. W. D. MacClement, M. Pintar, and H. E. Petch, Can. J. Phys. 45, 3257 (1967) https://doi.org/10.1139/p67-272
  19. R. R. Knispel and H. E. Petch, Can. J. Phys. 49, 870 (1971) https://doi.org/10.1139/p71-104

Cited by

  1. Slow ion exchange in crystalline Li 2 SO 4 ⋅H 2 O: A 6 Li 2D EXSY NMR investigation vol.304, 2017, https://doi.org/10.1016/j.ssi.2017.03.016