• Title/Summary/Keyword: Sub System

Search Result 8,179, Processing Time 0.037 seconds

Design and Validation of a Fuel Cell System with a NaBH4 Hydrogen Generation System for Future Defense Unmanned Vehicles (미래 국방 무인 이동체를 위한 NaBH4 수소 발생 시스템 기반 연료전지 시스템 설계 및 검증)

  • SEONG MO YUN;MIN JAE KIM;CHAE MIN HWANG;TAE HOON LEE;SU SANG YU;TAEK HYUN OH
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.2
    • /
    • pp.152-161
    • /
    • 2024
  • In this study, a fuel cell system for future defense unmanned vehicles was designed and validated. A Co/Al2O3-Ni foam catalyst for NaBH4 hydrolysis was characterized using several analytical methods. A NaBH4 hydrogen generation system with the Co/Al2O3-Ni foam catalyst continuously generated hydrogen at elevated reaction temperatures. The fuel cell system with the NaBH4 hydrogen generation system was designed and tested. The performance of the fuel cell system was comparable to that of the fuel cell system using pure hydrogen. Therefore, the fuel cell system with the NaBH4 hydrogen generation system is a suitable power source for future defense unmanned vehicles owing to its easy refueling and simple system.

Charge Structure of the Combined System (La0.6Sr0.4MnO3)0.7(La0.6Sr0.4FeO3)0.3 as Investigated by Mössbauer Spectroscopy

  • Uhm, Young Rang;Kim, Sam Jin;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • v.7 no.1
    • /
    • pp.18-20
    • /
    • 2002
  • The charge structures of (LSMO) and of the combined system $(La_{ 0.6}Sr_{0.4}FeO_3$(LSMO) and of the combined system (La_{0.6}Sr_{0.4}MnO_3)_{0.7}(La_{0.6}Sr_{0.4}/FeO_3)_{0.3}$are investigated by using M$\ddot{o}$ssbauer spectroscopy. The antiferromagnetically ordered $(La_{0.6}Sr_{0.4}FeO_3$(LSFO) has possible charges of Fe^{3+} and Fe^{4+}$, which include a low-spin $Fe^{4+}$ state at and above 230 K. The temperature dependences of the M$\ddot{o}$ssbauer spectra for the $(La_{ 0.6}Sr_{0.4}FeO_3$ system and for the combined $(LSMO)_{ 0.7}(LSFO)_{0.3}$ system are fitted as three sets of Zeeman patterns corresponding to $Fe^{3+}$ and $Fe^{4+} below 230 K. At and above 230 K, the fitted M$\ddot{o}$ssbauer spectra for the combined system are the same in all temperature ranges. Above 230 K, $(La_{0.6}Sr_{0.4}FeO_3$ spectrum consists of two sets of six Lorentzians for $Fe^{3+}$ and one line for low spin $Fe^{4+}$. It is worth noting that large fields are induced in the combined system.

The effect of H2O, NH3 and applied voltage to the particle conversion in the desulfurization system using a nano-pulse plasma (나노펄스 플라즈마를 이용한 탈황 시스템의 H2O 및 NH3, 펄스 인가전압에 따른 입자변환 분석)

  • Kim, Younghun;Shin, Dongho;Lee, Gunhee;Hong, Keejung;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • Nano-pulse plasma technology has great potential as the process simplicity, high efficiency and low energy consumption for SO2 removal. The research on the gas-to-particle conversion is required to achieve higher efficiency of SO2 gas removal. Thus, we studied the effect of the relative humidity, NH3 concentration and applied voltage of the nano-pulse plasma system in the gas to particle conversion of SO2. The particles from the conversions were increased from 10 to 100 nm in diameter as relative humidity, NH3 concentration, applied voltage increases. With these results, nano-pulse plasma system can be used to more efficient removal of SO2 gas by controlling above parameters.

A Study on Ozonation of Sulfamethoxazole (Sulfamethoxazole의 오존산화처리에 관한 연구)

  • Lee, Cheal-Gyu
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.459-469
    • /
    • 2019
  • The ozonation of sulfamethoxazole (SMX) was performed at 20℃ using a pilot scale countercurrent bubble column reactor. Ozonation systems were combined with UV irradiation and TiO2 addition. As the oxidation reaction proceeded in each treatment system, the pH of the sample decreased and in the O3/UV/TiO2 system, the pH change was the largest from 4.54 to 2.02. Under these experimental conditions, the scavenger impact of carbonate is negligible. The highest COD and TOC removal rate was observed in the O3/UV/TiO2 system due to the UV irradiation and the photocatalytic effect of TiO2. Also, the highest mineralization ratio(ε) value is 0.2 in the O3/UV/TiO2 system, which means theoxidation capacity of the systems. The highest SMX degradation rate constants calculated by COD and TOC values (COD and TOC) were 2.15 × 10-4 sec-1 and 1.00 × 10-4 sec-1 in the O3/UV/TiO2 system, respectively. The activation energy (Ea) of ozone treatment follows the Arrhenius law. It was calculated based on COD and TOC. Each activation energy decreased in order of single O3> O3/TiO2> O3/UV > O3/UV/TiO2 system. The result showed that ΔH is more effective than ΔS in each SMX ozontaionsystem, that is characteristic of the common oxidation reaction.

Sensitivity enhancement of H2 gas sensor using PbS quantum dots (황화납 양자점 감지막을 통해 감도가 개선된 수소센서)

  • Kim, Sae-Wan;Kim, Na-Ri;Kwon, Jin-Beom;Kim, Jae Keon;Jung, Dong Geon;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.388-393
    • /
    • 2020
  • In this study, a PbS quantum dots (QDs)-based H2 gas sensor with a Pd electrode was proposed. QDs have a size of several nanometers, and they can exhibit a high surface area when forming a thin film. In particular, the NH2 present in the ligand of PbS QDs and H2 gas are combined to form NH3+, subsequently the electrical characteristics of the QDs change. In addition to the resistance change owing to the reaction between Pd and H2 gas, the resistance change owing to the reaction between the NH2 of PbS QDs and H2 gas increases the current signal at the sensor output, which can produce a high output signal for the same concentration of H2 gas. Using the XRD and absorbance properties, the synthesis and particle size of the synthesized PbS QDs were analyzed. Using PbS QDs, the sensitivity was significantly improved by 44%. In addition, the proposed H2 gas sensor has high selectivity because it has low reactivity with heterogeneous gases such as C2H2, CO2, and CH4.

Pyroelectricity of BaTiO3-doped PMNT ferroelectric system for pyroelectric sensor

  • Yeon Jung Kim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.380-385
    • /
    • 2023
  • In this study, an MPB PMNT system containing 0.05 to 0.10 wt.% BaTiO3 was synthesized using a traditional chemical method and its pyroelectricity was investigated. Pyroelectricity, dielectricity, and ferroelectricity of the synthesized BaTiO3-PMNT system were analyzed by heat treatment at 1240~1280 ℃ for 4 hours to evaluate its applicability as a pyroelectric sensor. Unlike the simple ABO3 ferroelectric, the BaTiO3-doped PMNT system exhibited phase transition characteristics over a wide temperature range typical of complex perovskite structures. Although no dramatic change could be confirmed depending on the amount of BaTiO3 added, stable pyroelectricity was maintained near room temperature and over a wide temperature range. When the amount of BaTiO3 added increased from 0.05BaTiO3-PMNT to 0.10BaTiO3-PMNT, the electric field slightly increased from 5.00×103 kV/m to 6.75×103 kV/m, and the maximum value of remanent polarization slightly increased from 0.223 C/m2 to 0.234 C/m2. The pyroelectric coefficients of 0.05BaTiO3-PMNT and 0.10BaTiO3- PMNT at room temperature were measured to be ~0.0084 C/m2K and ~0.0043 C/m2K, respectively. The relaxor ferroelectric properties of the BaTiO3-PMNT system were confirmed by analyzing the plot of Kmax/K versus (T-Tmax)γ. The BaTiO3-doped MPB PMNT system showed a distinct pyroelectric performance index at room temperature, and the values were Fv ~ 0.0362 m2/C, Fd ~ 0.575×10-4 Pa-1/2.

REPRESENTATION OF SOLUTIONS OF A SYSTEM OF FIVE-ORDER NONLINEAR DIFFERENCE EQUATIONS

  • BERKAL, M.;BEREHAL, K.;REZAIKI, N.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.409-431
    • /
    • 2022
  • In this paper, we deal with the existence of solutions of the following system of nonlinear rational difference equations with order five $x_{n+1}=\frac{y_{n-3}x_{n-4}}{y_n(a+by_{n-3}x_{n-4})}$, $y_{n+1}=\frac{x_{n-3}y_{n-4}}{x_n(c+dx_{n-3}y_{n-4})}$, n = 0, 1, ⋯, where parameters a, b, c and d are not executed at the same time and initial conditions x-4, x-3, x-2, x-1, x0, y-4, y-3, y-2, y-1 and y0 are non zero real numbers.

Effect of an Additive on the Physical and Electrical Properties of the B2O3-ZnO-Bi2O3 Glass System for a Sheath Heater Module (Sheath Heater 모듈 실링용 B2O3-ZnO-Bi2O3계 유리소재 및 첨가제에 따른 물성 변화)

  • Choi, Jinsam;Shin, Dong Woo;Bae, Won Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.57-62
    • /
    • 2013
  • We investigated the thermal and electrical properties of the $B_2O_3-ZnO-Bi_2O_3$ glass system as a sealing material in sheath heater modules. A composition with over 90 wt% $Bi_2O_3$ in the $B_2O_3-ZnO-Bi_2O_3$ system was glassified by controlling the cooling rate. The glass transition temperature and thermal expansion coefficient in bismate glass could be controlled by the minor ingredients of ZnO, $SiO_2$, $BaO_2$, and $K_2O$. The $B_2O_3-ZnO-Bi_2O_3$ glass system bonded well to metal, and bismate glass insulating properties were comparable to those of bismate glass $B_2O_3-ZnO-PbO$ glass system in a sheath heater module.

Thermodynamic Comparison of Silicon Carbide CVD Process between CH3SiCl3-H2 and C3H8-SiCl4-H2 Systems (탄화규소 CVD 공정에서 CH3SiCl3-H2과 C3H8-SiCl4-H2계의 열역학적 비교)

  • Choi, Kyoon;Kim, Jun-Woo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.8
    • /
    • pp.569-573
    • /
    • 2012
  • In order to understand the difference in SiC deposition between the $CH_3SiCl_3-H_2$ and $C_3H_8-SiCl_4-H_2$ systems, we calculate the phase stability among ${\beta}$-SiC, graphite and silicon. We constructed the phase-diagram of ${\beta}$-SiC over graphite and silicon via computational thermodynamic calculation considering pressure (P), temperature (T) and gas composition (C) as variables. Both P-T-C diagrams showed a very steep phase boundary between the SiC+C and SiC region perpendicular to the H/Si axis, and also showed an SiC+Si region with a H/Si value of up to 6700 in the $C_3H_8-SiCl_4-H_2$, and 5000 in the $CH_3SiCl_3-H_2$ system. This difference in phase boundaries is explained by the ratio of Cl to Si, which is 4 for the $C_3H_8-SiCl_4-H_2$ system and 3 for the $C_3H_8-SiCl_4-H_2$ system. Because the C/Si ratio is fixed at 1 in the $CH_3SiCl_3-H_2$ system while it can be variable in the $C_3H_8-SiCl_4-H_2$ system, the functionally graded material is applicable for better mechanical bonding during SiC coating on graphite substrate in the $C_3H_8-SiCl_4-H_2$ system.

Periodic Solutions of a System of Piecewise Linear Difference Equations

  • Tikjha, Wirot;Lapierre, Evelina
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.2
    • /
    • pp.401-413
    • /
    • 2020
  • In this article we consider the following system of piecewise linear difference equations: xn+1 = |xn| - yn - 1 and yn+1 = xn + |yn| - 1. We show that when the initial condition is an element of the closed second or fourth quadrant the solution to the system is either a prime period-3 solution or one of two prime period-4 solutions.