DOI QR코드

DOI QR Code

A Study on Ozonation of Sulfamethoxazole

Sulfamethoxazole의 오존산화처리에 관한 연구

  • 이철규 (청주대학교 이공대학 환경공학과)
  • Received : 2019.07.08
  • Accepted : 2019.10.03
  • Published : 2019.11.30

Abstract

The ozonation of sulfamethoxazole (SMX) was performed at 20℃ using a pilot scale countercurrent bubble column reactor. Ozonation systems were combined with UV irradiation and TiO2 addition. As the oxidation reaction proceeded in each treatment system, the pH of the sample decreased and in the O3/UV/TiO2 system, the pH change was the largest from 4.54 to 2.02. Under these experimental conditions, the scavenger impact of carbonate is negligible. The highest COD and TOC removal rate was observed in the O3/UV/TiO2 system due to the UV irradiation and the photocatalytic effect of TiO2. Also, the highest mineralization ratio(ε) value is 0.2 in the O3/UV/TiO2 system, which means theoxidation capacity of the systems. The highest SMX degradation rate constants calculated by COD and TOC values (COD and TOC) were 2.15 × 10-4 sec-1 and 1.00 × 10-4 sec-1 in the O3/UV/TiO2 system, respectively. The activation energy (Ea) of ozone treatment follows the Arrhenius law. It was calculated based on COD and TOC. Each activation energy decreased in order of single O3> O3/TiO2> O3/UV > O3/UV/TiO2 system. The result showed that ΔH is more effective than ΔS in each SMX ozontaionsystem, that is characteristic of the common oxidation reaction.

Keywords

References

  1. Abellan, M. N., Bayarri, B., Gimenez, J., and Costa, J. (2007). Photocatalytic degradation of sulfamethoxazole in aqueous suspension of $TiO_2$, Applied Catalysis B: Environmental, 74, 233-241. https://doi.org/10.1016/j.apcatb.2007.02.017
  2. Akhtar, J., Amin, N, S., and Aris, A. (2011). Combined adsorption and catalytic ozonation for removal of sulfamethoxazole using $Fe_2O_3/CeO_2$ loaded activated carbon, Chemical Engineering Journal, 170, 163-144.
  3. Alexandra, G. G., Ofrao, J. J. M., and Pereira, M. F. R. (2013). Ceria dispersed on carbon materials for the catalytic ozonation of sulfamethoxazole, Journal of Environmental Chemical Engineering, 1, 260-269. https://doi.org/10.1016/j.jece.2013.05.009
  4. Ao, X. and Liu, W. (2016). Degradation of sulfamethxazole by medium pressure UV and oxidants: peroxymonosulfate, persulfate, and hydrogen peroxide, Chemical Engineering Journal, 313, 629-637. https://doi.org/10.1016/j.cej.2016.12.089
  5. Baquero, F., Martinez, J. L., and Canton, R. (2008). Antibiotics and antibiotic resistance in water environments, Current Opinion in Biotechnology, 19, 260-265. https://doi.org/10.1016/j.copbio.2008.05.006
  6. Beltran, F. J., Aguinaco, A., and Garcia-Araya, J. F. (2009). Mechanism and kinetics of sulfamethoxazole photocatalytic ozonation in water, Water Research, 43, 1359-1369. https://doi.org/10.1016/j.watres.2008.12.015
  7. Beltran, F. J., Aguinaco, A., and Garcia-Araya, J. F. (2012). Application of ozone involving advanced oxidation processes to remove some pharmaceutical compounds from urban wastewaters, Ozone: Science and Engineering, 34, 3-15. https://doi.org/10.1080/01919512.2012.640154
  8. Beltran, F. J., Aguinaco, A., Garcia-Araya, J. F., and Oropesa, A. (2008). Ozone and photocatalytic process to remove the antibiotic sulfamethoxazole from water, Water Research, 42, 3799-3808. https://doi.org/10.1016/j.watres.2008.07.019
  9. Beltran, F. J., Rivas, J., and Montero-de-Espinosa, R. (2002). Catalytic ozonation of oxalic acid in an aqueous $TiO_2$ slurry reactor, Applied Catalysis B: Environmental, 39, 221-231. https://doi.org/10.1016/S0926-3373(02)00102-9
  10. Bin, A. K., Duczmal, B., and Machniewski, P. (2001). Hydrodynamics and ozone mass transfer in a tall bubble cloumn, Chemical Engineering Science, 56, 6233-6240. https://doi.org/10.1016/S0009-2509(01)00213-5
  11. Buffle, M. O., Schumacher, J., Meylan, S., Jekel, M., and Gunten, U. V. (2006). Ozonation and advanced oxidation of wastewater: effect of $O_3$ dose, pH, DOM and $HO{\cdot}$-scavengers on ozone decomposition and $HO{\cdot}$ generation, Ozone: Science and Engineering, 28, 247-259. https://doi.org/10.1080/01919510600718825
  12. Carbajo, M., Beltran, F. J., Gimeno, O., Acedo, B., and Rivas, F. J. (2007). Ozonation of phenolic wastewaters in the presence of a perovskite type catalyst, Applied Catalysis B: Environmental, 74, 203-210. https://doi.org/10.1016/j.apcatb.2007.02.007
  13. Chen, Y. H., Chang, C. Y., Chiu, C. Y., Yu, Y. H., Chiang, P. C., Ku, Y., and Chen, J. N. (2003). Dynamic behavior of ozonation with pollutant in a countercurrunt bubble column with oxygen mass transfer, Water Research, 37, 2583-2594. https://doi.org/10.1016/S0043-1354(03)00085-X
  14. Creamasco, M. A. and Castilho, G. J. (2018). Simpilfied models to describe transport and decomposition of ozone in a bubble column, Journal of Environmaental Science and Engineering B, 7, 243-252.
  15. DeMore, W. B. and Tschuikow-Roux, E. (1974). Temperature dependence of the reations of OH and $HO_2$ with $O_3$, The Journal of Physical Chemistry, 78(15), 1447-1451. https://doi.org/10.1021/j100608a001
  16. Dlugosz, M., Z'mudzki, P., Kwiecien, A., Szczubialka, K., Krzek, J., and Nowakowska, M. (2015). Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating $TiO_2$-expanded perlite photocatalyst, Journal of Hazardous Materials, 298, 146-153. https://doi.org/10.1016/j.jhazmat.2015.05.016
  17. Dodd, M. and Huang, C. (2004). Transformation of the antibacterial agent sulfamethoxazole in reactions with chlorine: kinetics, mechanisms and pathways, Environmental Science & Technology, 38, 5607-5615. https://doi.org/10.1021/es035225z
  18. Egorova, G. V., Voblikova, V. A., Sabitova, L. V., Tkachenko, I. S., Tkachenko, S. N., and Lunin, V. V. (2015). Ozone Solubility in Water, Moscow University Chemistry Bulletin, 70(5), 207-210. https://doi.org/10.3103/S0027131415050053
  19. Elovitz, M. S. and Gunten, U. V. (1998). Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept, Ozone: Science and Engineering, 21, 239-260. https://doi.org/10.1080/01919519908547239
  20. Elovitz, M. S., Gunten, U. V., and Kaiser, H. P. (2000). Hydroxyl radical/ozone ratios during ozonation processes. II. The effect of temperature, pH, alkalinity, and DOM properties, Ozone: Science and Engineering, 22, 123-150. https://doi.org/10.1080/01919510008547216
  21. Espejo, A., Aguinaco, A., Amat, A. M., and Beltran, F. J. (2014). Some ozone advanced oxidation processes to improve the biological removal of selected pharmaceutical contaminants from urban wastewater, Journal of Environmental Science and Health, Part A, 49, 410-421. https://doi.org/10.1080/10934529.2014.854652
  22. Gao, S., Zhao, Z., Xu, Y., Tian, J., Qi, H., Lin, W., and Cui, F. (2014). Oxidation of sulfamethoxazole (SMX) by chlorine, ozone and permanganate-A comparative study, Journal of Hazardus Marterials, 274, 258-269. https://doi.org/10.1016/j.jhazmat.2014.04.024
  23. Goh, E. S. and Lee, H. J. (2016). Development trend of ciosensors for antimicrobial drugs in water environment, Applied Chemistry for Engineering, 27(6), 565-572. [Korean Literature] https://doi.org/10.14478/ace.2016.1107
  24. Gonzalerz, O., Esplugas, M., Sans, C., Toress, A., and Esplugas, S. (2009). Perfomance of a dequencing batch biofilm eeator for the treatment of pre-oxidized sulfamethoxazole solutions, Water Research, 43, 2149-2158. https://doi.org/10.1016/j.watres.2009.02.013
  25. Guo, W. Q., Yin, R. L., Zhou, X. J., Du, J. S., Cao, H. O., Yang, S. S., and Ren, N. Q. (2015). Sulfamethoxazole degradation by ultrasound/ozone oxidation process in water: Kinetics, mechanisms, and pathways, Ultrasonics Sonochemistry, 22, 182-187. https://doi.org/10.1016/j.ultsonch.2014.07.008
  26. Hou, L., Zhang, H., Wang, L., Chen, L., Xiong, Y., and Xue, X. (2013). Removal of sulfamethoxazole from aqueous solution by sono-ozonation in the presence of a magnetic catalyst, Separation and Purification Technology, 117, 46-52. https://doi.org/10.1016/j.seppur.2013.05.014
  27. Jang, Y. J., Yoo, Y. J., Sul, W. J., Cha, C. J., Rhee, O. J., and Chae, J. C. (2017). Effect of antibiotic resistant factors in effluent of wastewater treatment plant on stream, Korean Journal of Microbiology, 53(4), 316-319. [Korean Literature] https://doi.org/10.7845/KJM.2017.7083
  28. Jekel, M., Dott, W., Bergmann, A., Dunnbier, U., Gnir, R., Haist-Gulde, B., Hamscher, G., Letzel, M., Licha, T., Lyko, S., Miehe, U., Sacher, F., Scheurer, M., Schmidt, C. K., Reemtsma, T., and Ruhl, A. S. (2015). Selection of organic process and source indicator substances for the anthropogenically influenced water cycle, Chemosphere, 125, 155-167. https://doi.org/10.1016/j.chemosphere.2014.12.025
  29. Kang, J. W., Koo, J. Y., Choi, S. I., Jeong, J. C., and Yook, U. S. (Trans.). (2002). Water treatment technology using ozone, DongHwa Technology Publishing, Isao Soumiya (Original work Published 1989), 173-221. [Korean Literacture]
  30. Kasprzyk-Hordern, B., Ziolek, M., and Nawrocki, J. (2003). Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment, Applied Catalysis B: Environmental, 46(4), 639-669. https://doi.org/10.1016/S0926-3373(03)00326-6
  31. Kim, H. Y., Kim, T. H., and Yu, S. H. (2015). Photolytic degradation of sulfamethoxazole and trimethoprim using UV-A, UV-C and vacuum-UV (VUV), Journal of Environmental Science and Health , Part A, 50, 292-300. https://doi.org/10.1080/10934529.2015.981118
  32. Kim, S. D., Cho, J. W., Kim, I. S., Vanderford, B. J., and Snyder., S. A. (2007). Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters, Water Research, 41, 1013-1021. https://doi.org/10.1016/j.watres.2006.06.034
  33. Kummerer, K. (2009). Antibiotics in the aquatic environment - a review - Part I, Chemosphere, 75(4), 417-434. https://doi.org/10.1016/j.chemosphere.2008.11.086
  34. Laidler, K. J. (1964). Chemical Kinetics Second Edition, McGraw-Hill Book Company, New York, 49-72.
  35. Lee, C. G. (2016). Effect of UV Irradiation and $TiO_2$ Addition on the Ozonation of Pyruvic Acid, Journal of Korean Society on Water Environment, 32(1), 23-29. [Korean Literature] https://doi.org/10.15681/KSWE.2016.32.1.23
  36. Lee, C. G. and Kim, M. C. (2010). A study of ozonation characteristics of bis(2-chloroethyl) ether, Applied Chemistry for Engineering, 21(6), 610-615. [Korean Literature]
  37. Lester, Y., Avisar, D., and Mamane, H. (2010). Photodegradation of the antibiotic sulphamethoxazole in water with UV/$H_2O_2$ advanced oxidation process, Environmental Technology, 31, 175-183. https://doi.org/10.1080/09593330903414238
  38. Lin, H., Niu, J., Xu, J., Li, Y., and Pan Y. (2013). Electrochemical mineralization of sulfamethoxazole by $Ti/SnO_2-Sb/Ce-PbO_2$ anode: Kinetics, reaction pathways cost evolution, and energy, Electrochimica Acta, 97, 167-174. https://doi.org/10.1016/j.electacta.2013.03.019
  39. Lucas, M. S., Peres, J. A., Puma, G. L. (2010). Treatment of winery wastewater by ozone-based advanced oxidation processes ($O_3$, $O_3/UV$ and $O_3/UV/H_2O_2$) in a pilot-scale bubble column reactor and process economics, Separation and Purification Technology, 72, 235-241. https://doi.org/10.1016/j.seppur.2010.01.016
  40. Luna, M. D., Veciana, M. L., Su, C. C., and Lu, M. C. (2012). Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell, Journal of Hazardous Materials, (217-218), 200-207. https://doi.org/10.1016/j.jhazmat.2012.03.018
  41. Manahan, E. S. (1990). Environmental Chemistry Forth Edition, LEWIS PUBLISHIERS, 22-25.
  42. Martini, J., Orge, C, A., Faria, J, L., Pereira, M, F, R., and Soares, O, S, G, P. (2018). Sulfamethoxazole degradation by combination of advanced oxidation process, Journal of Environmental Chemical Engineering, 6(4), 4054-4060. https://doi.org/10.1016/j.jece.2018.05.047
  43. Martins, R. C., Dantas, R. F., Sans, C., Esplugas, S., and Quinta-Ferreira, R. M. (2015). Ozone/$H_2O_2$ performance on the degradation of sulfamethoxazole, Ozone: Science & Engineering, 37, 509-517. https://doi.org/10.1080/01919512.2015.1053427
  44. Ministry of Environment (ME). (2018). Standard methods for water quality, Ministry of Environment [Korean Literature]
  45. Mizuno, T., Tsuno, H., and Yamada, H. (2007). Development of ozone self-decomposition model for engineering design, Ozone: Science and Engineering, 29, 55-63. https://doi.org/10.1080/01919510601115849
  46. National Institute of Environmental Research (NIER). (2013). The 2ed Comprehensive Action Plan for Anti microbial resistance (2013-2017), National Institute of Environmental Research, Report 2013, 28-30. [Korean Literature].
  47. Nelson, Jr., D. D. and Mark, S. Z. (1994). A mechanistic study of the reaction of $HO_2$ radical with ozone, The Journal of Physical Chemistry A, 98, 2101-2104. https://doi.org/10.1021/j100059a020
  48. Park, J. E., Kim, M. W., Lee, G. J., Baek, J. W., and Lee, S. K. (2016). Evaluation of behavior of activated sludge systems exposed to acetaminophen and sulfamethoxazole, Journal of the Korean Society for Environmental Analysis, 19(2), 119-125. [Korean Literature]
  49. Perez, S., Eichhorn, P., and Aga, D. S. (2005). Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment, Environmental Toxicology and Chemistry, 2(4), 1361-1367. https://doi.org/10.1897/04-211R.1
  50. Petrovic, M., Gonzales, S., and Barcelo, D. (2003). Analysis and removal of emerging contaminants in wastewater and drinking water, Trends in Analytical Chemistry, 22, 685-696. https://doi.org/10.1016/S0165-9936(03)01105-1
  51. Pocostales, J. P., Alvarez, P. M., and Beltran, F. J. (2010). Kinetic modeling of powdered activated carbon ozonation of sulfamethoxazole in water, Chemical Engineering Journal, 164, 70-76. https://doi.org/10.1016/j.cej.2010.08.025
  52. Qi, C., Liu, X., Lin, C., Zhang, X., Ma, J., Tan, H., and Ye, W. (2014). Degradation of sulfamethoxazole by microwave-activated persulfate: kinetics, mechanism and acute toxicity, Chemical Engineering Journal, 249, 6-14. https://doi.org/10.1016/j.cej.2014.03.086
  53. Qi, S. Q., Mao, Y. Q., Guo, X. F., Wang, X. M., Yang, H. W., and Xie, Y. F. F. (2016). Evaluating dissolved ozone in a bubble column using a discrete-bubble model, Ozone: Science and Engineering, 39(1), 44-53.
  54. Qui, Y. (1999). Kinetic and mass transfer studies of the reacions between dichlorophenols and ozone in liquid-liquid and gas-liquid systems, Docter's Thesis, Mississippi State University. Mississippi, United States of America.
  55. Rivas, F. J., Beltran, F. J., Gimeno, O., and Acedo, B. (2001). Wet air oxidation of wastewater from olive oil mills, Chemical Engineering and Technology, 24(4), 415-421. https://doi.org/10.1002/1521-4125(200104)24:4<415::AID-CEAT415>3.0.CO;2-C
  56. Shahidi, D., Moheb, A., Abbas, R., Larouk, S., Roy, R., and Azzouz, A. (2015). Total mineralization of sulfamethoxazole and aromatic pollutants through $Fe^{2+}$-montmorillonite catalyzed ozonation, Journal of Hazardous Materials, 298, 338-350. https://doi.org/10.1016/j.jhazmat.2015.05.029
  57. Shiyun, Z., Xuesong, Z., Daotang, L., and Weimin, C. (2003). Ozonation of naphthalene sulfonic acids in aqueous solutions: Part II-relationships of their COD, TOC removal and the frontier orbital energies, Water research, 37(5), 1185-1191. https://doi.org/10.1016/S0043-1354(02)00178-1
  58. Velegraki, T., Balayiannis, G., Diamadopoulos, E., Katsaounis, A., and Mantzavinos, D. (2010). Electrochemical oxidation of benzoic acid in water over boron-doped diamond electrodes: Statistical analysis of key operating parameters, kinetic modeling, reaction by-products and ecotoxicity, Chemical Engineering Journal, 160, 538-548. https://doi.org/10.1016/j.cej.2010.03.065
  59. Wang, X. D., Lv, Y., Li, M. M., and Liu, H. Y. (2014). Removal of nonylphenol from water by ozone, in advanced materials research, Trans Tech Publications, 859, 357-360.
  60. Xin, Y., Gao, M., Wang, Y., and Ma, D. (2014). Photoelectrocatalytic degradation of 4-nonylphenol in water with $WO_3/TiO_2$ nanotube array photoelectrodes, Chemical Engineering Journal, 242, 162-169. https://doi.org/10.1016/j.cej.2013.12.068
  61. Yang, Y., Lu, X., Jiang, J., Ma, J., Liu, G., Cao, Y., Liu, W., Li, J., Pang, S., Kong, X., and Luo, C. (2017). Degradation of slufamethoxazole by UV, UV/$H_2O_2$ and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate, Water Research, 118, 196-207. https://doi.org/10.1016/j.watres.2017.03.054
  62. Yin, R., Guo, W., Zhou, X., Zheng, H., Du, J., Wu, Q., Chang, J., and Ren, N. (2016). Enhanced sulfamethoxazole ozonation by noble metal-free catalysis based on magnetic $Fe_3O_4$ nanoparticles: catalytic performance and degradation mechanism, Royal Society of Chemistry, 6, 19265-19270.
  63. Zhou, H., Smith, D. W., and Stanley, S. J. (1994). Modeling of dissolved ozone concentration profiles in bubble columns, Journal of Environmental Engineering, 120(4), 821-840. https://doi.org/10.1061/(ASCE)0733-9372(1994)120:4(821)