References
-
Abellan, M. N., Bayarri, B., Gimenez, J., and Costa, J. (2007). Photocatalytic degradation of sulfamethoxazole in aqueous suspension of
$TiO_2$ , Applied Catalysis B: Environmental, 74, 233-241. https://doi.org/10.1016/j.apcatb.2007.02.017 -
Akhtar, J., Amin, N, S., and Aris, A. (2011). Combined adsorption and catalytic ozonation for removal of sulfamethoxazole using
$Fe_2O_3/CeO_2$ loaded activated carbon, Chemical Engineering Journal, 170, 163-144. - Alexandra, G. G., Ofrao, J. J. M., and Pereira, M. F. R. (2013). Ceria dispersed on carbon materials for the catalytic ozonation of sulfamethoxazole, Journal of Environmental Chemical Engineering, 1, 260-269. https://doi.org/10.1016/j.jece.2013.05.009
- Ao, X. and Liu, W. (2016). Degradation of sulfamethxazole by medium pressure UV and oxidants: peroxymonosulfate, persulfate, and hydrogen peroxide, Chemical Engineering Journal, 313, 629-637. https://doi.org/10.1016/j.cej.2016.12.089
- Baquero, F., Martinez, J. L., and Canton, R. (2008). Antibiotics and antibiotic resistance in water environments, Current Opinion in Biotechnology, 19, 260-265. https://doi.org/10.1016/j.copbio.2008.05.006
- Beltran, F. J., Aguinaco, A., and Garcia-Araya, J. F. (2009). Mechanism and kinetics of sulfamethoxazole photocatalytic ozonation in water, Water Research, 43, 1359-1369. https://doi.org/10.1016/j.watres.2008.12.015
- Beltran, F. J., Aguinaco, A., and Garcia-Araya, J. F. (2012). Application of ozone involving advanced oxidation processes to remove some pharmaceutical compounds from urban wastewaters, Ozone: Science and Engineering, 34, 3-15. https://doi.org/10.1080/01919512.2012.640154
- Beltran, F. J., Aguinaco, A., Garcia-Araya, J. F., and Oropesa, A. (2008). Ozone and photocatalytic process to remove the antibiotic sulfamethoxazole from water, Water Research, 42, 3799-3808. https://doi.org/10.1016/j.watres.2008.07.019
-
Beltran, F. J., Rivas, J., and Montero-de-Espinosa, R. (2002). Catalytic ozonation of oxalic acid in an aqueous
$TiO_2$ slurry reactor, Applied Catalysis B: Environmental, 39, 221-231. https://doi.org/10.1016/S0926-3373(02)00102-9 - Bin, A. K., Duczmal, B., and Machniewski, P. (2001). Hydrodynamics and ozone mass transfer in a tall bubble cloumn, Chemical Engineering Science, 56, 6233-6240. https://doi.org/10.1016/S0009-2509(01)00213-5
-
Buffle, M. O., Schumacher, J., Meylan, S., Jekel, M., and Gunten, U. V. (2006). Ozonation and advanced oxidation of wastewater: effect of
$O_3$ dose, pH, DOM and$HO{\cdot}$ -scavengers on ozone decomposition and$HO{\cdot}$ generation, Ozone: Science and Engineering, 28, 247-259. https://doi.org/10.1080/01919510600718825 - Carbajo, M., Beltran, F. J., Gimeno, O., Acedo, B., and Rivas, F. J. (2007). Ozonation of phenolic wastewaters in the presence of a perovskite type catalyst, Applied Catalysis B: Environmental, 74, 203-210. https://doi.org/10.1016/j.apcatb.2007.02.007
- Chen, Y. H., Chang, C. Y., Chiu, C. Y., Yu, Y. H., Chiang, P. C., Ku, Y., and Chen, J. N. (2003). Dynamic behavior of ozonation with pollutant in a countercurrunt bubble column with oxygen mass transfer, Water Research, 37, 2583-2594. https://doi.org/10.1016/S0043-1354(03)00085-X
- Creamasco, M. A. and Castilho, G. J. (2018). Simpilfied models to describe transport and decomposition of ozone in a bubble column, Journal of Environmaental Science and Engineering B, 7, 243-252.
-
DeMore, W. B. and Tschuikow-Roux, E. (1974). Temperature dependence of the reations of OH and
$HO_2$ with$O_3$ , The Journal of Physical Chemistry, 78(15), 1447-1451. https://doi.org/10.1021/j100608a001 -
Dlugosz, M., Z'mudzki, P., Kwiecien, A., Szczubialka, K., Krzek, J., and Nowakowska, M. (2015). Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating
$TiO_2$ -expanded perlite photocatalyst, Journal of Hazardous Materials, 298, 146-153. https://doi.org/10.1016/j.jhazmat.2015.05.016 - Dodd, M. and Huang, C. (2004). Transformation of the antibacterial agent sulfamethoxazole in reactions with chlorine: kinetics, mechanisms and pathways, Environmental Science & Technology, 38, 5607-5615. https://doi.org/10.1021/es035225z
- Egorova, G. V., Voblikova, V. A., Sabitova, L. V., Tkachenko, I. S., Tkachenko, S. N., and Lunin, V. V. (2015). Ozone Solubility in Water, Moscow University Chemistry Bulletin, 70(5), 207-210. https://doi.org/10.3103/S0027131415050053
- Elovitz, M. S. and Gunten, U. V. (1998). Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept, Ozone: Science and Engineering, 21, 239-260. https://doi.org/10.1080/01919519908547239
- Elovitz, M. S., Gunten, U. V., and Kaiser, H. P. (2000). Hydroxyl radical/ozone ratios during ozonation processes. II. The effect of temperature, pH, alkalinity, and DOM properties, Ozone: Science and Engineering, 22, 123-150. https://doi.org/10.1080/01919510008547216
- Espejo, A., Aguinaco, A., Amat, A. M., and Beltran, F. J. (2014). Some ozone advanced oxidation processes to improve the biological removal of selected pharmaceutical contaminants from urban wastewater, Journal of Environmental Science and Health, Part A, 49, 410-421. https://doi.org/10.1080/10934529.2014.854652
- Gao, S., Zhao, Z., Xu, Y., Tian, J., Qi, H., Lin, W., and Cui, F. (2014). Oxidation of sulfamethoxazole (SMX) by chlorine, ozone and permanganate-A comparative study, Journal of Hazardus Marterials, 274, 258-269. https://doi.org/10.1016/j.jhazmat.2014.04.024
- Goh, E. S. and Lee, H. J. (2016). Development trend of ciosensors for antimicrobial drugs in water environment, Applied Chemistry for Engineering, 27(6), 565-572. [Korean Literature] https://doi.org/10.14478/ace.2016.1107
- Gonzalerz, O., Esplugas, M., Sans, C., Toress, A., and Esplugas, S. (2009). Perfomance of a dequencing batch biofilm eeator for the treatment of pre-oxidized sulfamethoxazole solutions, Water Research, 43, 2149-2158. https://doi.org/10.1016/j.watres.2009.02.013
- Guo, W. Q., Yin, R. L., Zhou, X. J., Du, J. S., Cao, H. O., Yang, S. S., and Ren, N. Q. (2015). Sulfamethoxazole degradation by ultrasound/ozone oxidation process in water: Kinetics, mechanisms, and pathways, Ultrasonics Sonochemistry, 22, 182-187. https://doi.org/10.1016/j.ultsonch.2014.07.008
- Hou, L., Zhang, H., Wang, L., Chen, L., Xiong, Y., and Xue, X. (2013). Removal of sulfamethoxazole from aqueous solution by sono-ozonation in the presence of a magnetic catalyst, Separation and Purification Technology, 117, 46-52. https://doi.org/10.1016/j.seppur.2013.05.014
- Jang, Y. J., Yoo, Y. J., Sul, W. J., Cha, C. J., Rhee, O. J., and Chae, J. C. (2017). Effect of antibiotic resistant factors in effluent of wastewater treatment plant on stream, Korean Journal of Microbiology, 53(4), 316-319. [Korean Literature] https://doi.org/10.7845/KJM.2017.7083
- Jekel, M., Dott, W., Bergmann, A., Dunnbier, U., Gnir, R., Haist-Gulde, B., Hamscher, G., Letzel, M., Licha, T., Lyko, S., Miehe, U., Sacher, F., Scheurer, M., Schmidt, C. K., Reemtsma, T., and Ruhl, A. S. (2015). Selection of organic process and source indicator substances for the anthropogenically influenced water cycle, Chemosphere, 125, 155-167. https://doi.org/10.1016/j.chemosphere.2014.12.025
- Kang, J. W., Koo, J. Y., Choi, S. I., Jeong, J. C., and Yook, U. S. (Trans.). (2002). Water treatment technology using ozone, DongHwa Technology Publishing, Isao Soumiya (Original work Published 1989), 173-221. [Korean Literacture]
- Kasprzyk-Hordern, B., Ziolek, M., and Nawrocki, J. (2003). Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment, Applied Catalysis B: Environmental, 46(4), 639-669. https://doi.org/10.1016/S0926-3373(03)00326-6
- Kim, H. Y., Kim, T. H., and Yu, S. H. (2015). Photolytic degradation of sulfamethoxazole and trimethoprim using UV-A, UV-C and vacuum-UV (VUV), Journal of Environmental Science and Health , Part A, 50, 292-300. https://doi.org/10.1080/10934529.2015.981118
- Kim, S. D., Cho, J. W., Kim, I. S., Vanderford, B. J., and Snyder., S. A. (2007). Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters, Water Research, 41, 1013-1021. https://doi.org/10.1016/j.watres.2006.06.034
- Kummerer, K. (2009). Antibiotics in the aquatic environment - a review - Part I, Chemosphere, 75(4), 417-434. https://doi.org/10.1016/j.chemosphere.2008.11.086
- Laidler, K. J. (1964). Chemical Kinetics Second Edition, McGraw-Hill Book Company, New York, 49-72.
-
Lee, C. G. (2016). Effect of UV Irradiation and
$TiO_2$ Addition on the Ozonation of Pyruvic Acid, Journal of Korean Society on Water Environment, 32(1), 23-29. [Korean Literature] https://doi.org/10.15681/KSWE.2016.32.1.23 - Lee, C. G. and Kim, M. C. (2010). A study of ozonation characteristics of bis(2-chloroethyl) ether, Applied Chemistry for Engineering, 21(6), 610-615. [Korean Literature]
-
Lester, Y., Avisar, D., and Mamane, H. (2010). Photodegradation of the antibiotic sulphamethoxazole in water with UV/
$H_2O_2$ advanced oxidation process, Environmental Technology, 31, 175-183. https://doi.org/10.1080/09593330903414238 -
Lin, H., Niu, J., Xu, J., Li, Y., and Pan Y. (2013). Electrochemical mineralization of sulfamethoxazole by
$Ti/SnO_2-Sb/Ce-PbO_2$ anode: Kinetics, reaction pathways cost evolution, and energy, Electrochimica Acta, 97, 167-174. https://doi.org/10.1016/j.electacta.2013.03.019 -
Lucas, M. S., Peres, J. A., Puma, G. L. (2010). Treatment of winery wastewater by ozone-based advanced oxidation processes (
$O_3$ ,$O_3/UV$ and$O_3/UV/H_2O_2$ ) in a pilot-scale bubble column reactor and process economics, Separation and Purification Technology, 72, 235-241. https://doi.org/10.1016/j.seppur.2010.01.016 - Luna, M. D., Veciana, M. L., Su, C. C., and Lu, M. C. (2012). Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell, Journal of Hazardous Materials, (217-218), 200-207. https://doi.org/10.1016/j.jhazmat.2012.03.018
- Manahan, E. S. (1990). Environmental Chemistry Forth Edition, LEWIS PUBLISHIERS, 22-25.
- Martini, J., Orge, C, A., Faria, J, L., Pereira, M, F, R., and Soares, O, S, G, P. (2018). Sulfamethoxazole degradation by combination of advanced oxidation process, Journal of Environmental Chemical Engineering, 6(4), 4054-4060. https://doi.org/10.1016/j.jece.2018.05.047
-
Martins, R. C., Dantas, R. F., Sans, C., Esplugas, S., and Quinta-Ferreira, R. M. (2015). Ozone/
$H_2O_2$ performance on the degradation of sulfamethoxazole, Ozone: Science & Engineering, 37, 509-517. https://doi.org/10.1080/01919512.2015.1053427 - Ministry of Environment (ME). (2018). Standard methods for water quality, Ministry of Environment [Korean Literature]
- Mizuno, T., Tsuno, H., and Yamada, H. (2007). Development of ozone self-decomposition model for engineering design, Ozone: Science and Engineering, 29, 55-63. https://doi.org/10.1080/01919510601115849
- National Institute of Environmental Research (NIER). (2013). The 2ed Comprehensive Action Plan for Anti microbial resistance (2013-2017), National Institute of Environmental Research, Report 2013, 28-30. [Korean Literature].
-
Nelson, Jr., D. D. and Mark, S. Z. (1994). A mechanistic study of the reaction of
$HO_2$ radical with ozone, The Journal of Physical Chemistry A, 98, 2101-2104. https://doi.org/10.1021/j100059a020 - Park, J. E., Kim, M. W., Lee, G. J., Baek, J. W., and Lee, S. K. (2016). Evaluation of behavior of activated sludge systems exposed to acetaminophen and sulfamethoxazole, Journal of the Korean Society for Environmental Analysis, 19(2), 119-125. [Korean Literature]
- Perez, S., Eichhorn, P., and Aga, D. S. (2005). Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment, Environmental Toxicology and Chemistry, 2(4), 1361-1367. https://doi.org/10.1897/04-211R.1
- Petrovic, M., Gonzales, S., and Barcelo, D. (2003). Analysis and removal of emerging contaminants in wastewater and drinking water, Trends in Analytical Chemistry, 22, 685-696. https://doi.org/10.1016/S0165-9936(03)01105-1
- Pocostales, J. P., Alvarez, P. M., and Beltran, F. J. (2010). Kinetic modeling of powdered activated carbon ozonation of sulfamethoxazole in water, Chemical Engineering Journal, 164, 70-76. https://doi.org/10.1016/j.cej.2010.08.025
- Qi, C., Liu, X., Lin, C., Zhang, X., Ma, J., Tan, H., and Ye, W. (2014). Degradation of sulfamethoxazole by microwave-activated persulfate: kinetics, mechanism and acute toxicity, Chemical Engineering Journal, 249, 6-14. https://doi.org/10.1016/j.cej.2014.03.086
- Qi, S. Q., Mao, Y. Q., Guo, X. F., Wang, X. M., Yang, H. W., and Xie, Y. F. F. (2016). Evaluating dissolved ozone in a bubble column using a discrete-bubble model, Ozone: Science and Engineering, 39(1), 44-53.
- Qui, Y. (1999). Kinetic and mass transfer studies of the reacions between dichlorophenols and ozone in liquid-liquid and gas-liquid systems, Docter's Thesis, Mississippi State University. Mississippi, United States of America.
- Rivas, F. J., Beltran, F. J., Gimeno, O., and Acedo, B. (2001). Wet air oxidation of wastewater from olive oil mills, Chemical Engineering and Technology, 24(4), 415-421. https://doi.org/10.1002/1521-4125(200104)24:4<415::AID-CEAT415>3.0.CO;2-C
-
Shahidi, D., Moheb, A., Abbas, R., Larouk, S., Roy, R., and Azzouz, A. (2015). Total mineralization of sulfamethoxazole and aromatic pollutants through
$Fe^{2+}$ -montmorillonite catalyzed ozonation, Journal of Hazardous Materials, 298, 338-350. https://doi.org/10.1016/j.jhazmat.2015.05.029 - Shiyun, Z., Xuesong, Z., Daotang, L., and Weimin, C. (2003). Ozonation of naphthalene sulfonic acids in aqueous solutions: Part II-relationships of their COD, TOC removal and the frontier orbital energies, Water research, 37(5), 1185-1191. https://doi.org/10.1016/S0043-1354(02)00178-1
- Velegraki, T., Balayiannis, G., Diamadopoulos, E., Katsaounis, A., and Mantzavinos, D. (2010). Electrochemical oxidation of benzoic acid in water over boron-doped diamond electrodes: Statistical analysis of key operating parameters, kinetic modeling, reaction by-products and ecotoxicity, Chemical Engineering Journal, 160, 538-548. https://doi.org/10.1016/j.cej.2010.03.065
- Wang, X. D., Lv, Y., Li, M. M., and Liu, H. Y. (2014). Removal of nonylphenol from water by ozone, in advanced materials research, Trans Tech Publications, 859, 357-360.
-
Xin, Y., Gao, M., Wang, Y., and Ma, D. (2014). Photoelectrocatalytic degradation of 4-nonylphenol in water with
$WO_3/TiO_2$ nanotube array photoelectrodes, Chemical Engineering Journal, 242, 162-169. https://doi.org/10.1016/j.cej.2013.12.068 -
Yang, Y., Lu, X., Jiang, J., Ma, J., Liu, G., Cao, Y., Liu, W., Li, J., Pang, S., Kong, X., and Luo, C. (2017). Degradation of slufamethoxazole by UV, UV/
$H_2O_2$ and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate, Water Research, 118, 196-207. https://doi.org/10.1016/j.watres.2017.03.054 -
Yin, R., Guo, W., Zhou, X., Zheng, H., Du, J., Wu, Q., Chang, J., and Ren, N. (2016). Enhanced sulfamethoxazole ozonation by noble metal-free catalysis based on magnetic
$Fe_3O_4$ nanoparticles: catalytic performance and degradation mechanism, Royal Society of Chemistry, 6, 19265-19270. - Zhou, H., Smith, D. W., and Stanley, S. J. (1994). Modeling of dissolved ozone concentration profiles in bubble columns, Journal of Environmental Engineering, 120(4), 821-840. https://doi.org/10.1061/(ASCE)0733-9372(1994)120:4(821)