REPRESENTATION OF SOLUTIONS OF A SYSTEM OF FIVE-ORDER NONLINEAR DIFFERENCE EQUATIONS

M. BERKAL*, K. BEREHAL AND N. REZAIKI

Abstract

In this paper, we deal with the existence of solutions of the following system of nonlinear rational difference equations with order five $x_{n+1}=\frac{y_{n-3} x_{n-4}}{y_{n}\left(a+b y_{n-3} x_{n-4}\right)}, \quad y_{n+1}=\frac{x_{n-3} y_{n-4}}{x_{n}\left(c+d x_{n-3} y_{n-4}\right)}, \quad n=0,1, \cdots$,

where parameters a, b, c and d are not executed at the same time and initial conditions $x_{-4}, x_{-3}, x_{-2}, x_{-1}, x_{0}, y_{-4}, y_{-3}, y_{-2}, y_{-1}$ and y_{0} are non zero real numbers.

AMS Mathematics Subject Classification : 65H05, 65F10.
Key words and phrases : System of difference equations, general solution of system of difference equations, representation of solutions.

1. Introduction

The theory of difference equations developed greatly during the last twentyfive years of the twentieth century. The applications of the theory of difference equations is rapidly increasing to various fields such as numerical analysis, economics, biology, control theory, finite computer science and mathematics.
Thus, there is every reason for studying the theory of difference equations as a well deserved discipline.
The are many papers related to the difference equations systems for example, solvability of a systems of nonlinear difference equations of higher order .

$$
\begin{equation*}
x_{n}=\frac{x_{n-k} y_{n-k-l}}{y_{n-l}\left(a_{n}+b_{n} x_{n-k} y_{n-k-l}\right)}, \quad y_{n}=\frac{y_{n-k} x_{n-k-l}}{x_{n-l}\left(\alpha_{n}+\beta_{n} y_{n-k} x_{n-k-l}\right)}, \tag{1}
\end{equation*}
$$

has been studied by Kara et al. in [21].
El-Dessoky et. al [10] has studied the following systems of difference equations

$$
\begin{equation*}
x_{n+1}=\frac{x_{n-3} y_{n-4}}{y_{n}\left(\pm 1 \pm x_{n-3} y_{n-4}\right)}, \quad y_{n+1}=\frac{y_{n-3} x_{n-4}}{x_{n}\left(\pm 1 \pm y_{n-3} x_{n-4}\right)} \tag{2}
\end{equation*}
$$

[^0]Stević et al [33] have got the solutions of the equation

$$
\begin{equation*}
x_{n}=\frac{x_{n-2} x_{n-k-2}}{x_{n-k}\left(a_{n}+b_{n} x_{n-2} x_{n-k-2}\right)}, \tag{3}
\end{equation*}
$$

Elsayed et al [8] found Periodicity and solutions for some systems of nonlinear rational difference equations

$$
\begin{equation*}
x_{n+1}=\frac{x_{n-2} y_{n-1}}{y_{n}\left(\pm 1 \pm x_{n-2} y_{n-1}\right)}, \quad y_{n+1}=\frac{y_{n-2} x_{n-1}}{x_{n}\left(\pm 1 \pm y_{n-2} x_{n-1}\right)} \tag{4}
\end{equation*}
$$

Yazlik and kara [36] gave the solution of the following systems of difference equations
$x_{n}=\frac{x_{n-4} y_{n-5}}{y_{n-1}\left(a_{n}+b_{n} x_{n-2} y_{n-3} x_{n-4} y_{n-5}\right)}, \quad y_{n}=\frac{y_{n-4} x_{n-5}}{x_{n-1}\left(\alpha_{n}+\beta_{n} y_{n-2} x_{n-3} y_{n-4} x_{n-5}\right)}$.
Similar nonlinear systems of rational difference equations were studied [7], [10], [30], [20],[21].

Motivated by the above mentioned papers in this paper, we show that we are able to express in a closed form the well defined solutions of the following system of difference equations

$$
x_{n+1}=\frac{y_{n-3} x_{n-4}}{y_{n}\left(a+b y_{n-3} x_{n-4}\right)}, \quad y_{n+1}=\frac{x_{n-3} y_{n-4}}{x_{n}\left(c+d x_{n-3} y_{n-4}\right)}
$$

where $n \in \mathbb{N}_{0}, a, b, c, d$ and initial values $x_{-4}, x_{-3}, x_{-2}, x_{-1}, x_{0}, y_{-4}, y_{-3}, y_{-2}, y_{-1}$ and y_{0} are nonzero real numbers.

2. Main results

In this section, we investigate the solutions of the system of difference equations

$$
\begin{equation*}
x_{n+1}=\frac{y_{n-3} x_{n-4}}{y_{n}\left(a+b y_{n-3} x_{n-4}\right)}, \quad y_{n+1}=\frac{x_{n-3} y_{n-4}}{x_{n}\left(c+d x_{n-3} y_{n-4}\right)} \tag{6}
\end{equation*}
$$

where $n \in \mathbb{N}_{0}$ and the initial conditions $x_{-4}, x_{-3}, x_{-2}, x_{-1}, x_{0}, y_{-4}, y_{-3}, y_{-2}, y_{-1}$ and y_{0} are arbitrary non zero real numbers.
So, the system (6) can be written as the following system

$$
\begin{equation*}
u_{n+1}=\frac{v_{n-3}}{a+b v_{n-3}}, \quad v_{n+1}=\frac{u_{n-3}}{c+d u_{n-3}} \tag{7}
\end{equation*}
$$

Using the following change of variables

$$
\left\{\begin{array}{l}
u_{n}=x_{n} y_{n-1} \tag{8}\\
v_{n}=y_{n} x_{n-1}
\end{array}\right.
$$

2.1. Solutions of $u_{n+1}=\frac{v_{n}}{a+b v_{n}}, \quad v_{n+1}=\frac{u_{n}}{c+u_{n}}$. Here, to give a closed form for the well defined solutions of the system (7), We consider the system of two difference equations nonlinear first-order .

$$
\begin{equation*}
u_{n+1}=\frac{v_{n}}{a+b v_{n}}, \quad v_{n+1}=\frac{u_{n}}{c+d u_{n}} \quad n \geq 0 \tag{9}
\end{equation*}
$$

The system (9) can be written as the following equation

$$
\begin{equation*}
u_{n+1}=\frac{u_{n-1}}{a c+(a d+b) u_{n-1}}, \quad n \geq 1 \tag{10}
\end{equation*}
$$

Let

$$
\begin{equation*}
u_{n}^{(j)}=u_{2 n+j}, \quad n \in \mathbb{N}_{0}, j \in\{0,1\} . \tag{11}
\end{equation*}
$$

Using notation (11), we can write (10) as

$$
\begin{equation*}
u_{n+1}^{(j)}=\frac{u_{n}^{(j)}}{a c+(a d+b) u_{n}^{(j)}} \tag{12}
\end{equation*}
$$

where $j \in\{0,1\}$.
Now consider the equation

$$
\begin{equation*}
\mathcal{W}_{n+1}=\frac{\mathcal{W}_{n}}{a c+(a d+b) \mathcal{W}_{n}} \tag{13}
\end{equation*}
$$

Using the change of variables

$$
\begin{equation*}
\mathcal{W}_{n}=\frac{1}{(a d+b)}\left(\mathcal{H}_{n}-a c\right) \tag{14}
\end{equation*}
$$

we can write (13) as

$$
\begin{equation*}
\mathcal{H}_{n+1}=\frac{(a c+1) \mathcal{H}_{n}-a c}{\mathcal{H}_{n}} \tag{15}
\end{equation*}
$$

To obtain solutions of equation (15), let's review the following lemmas.
\checkmark if $a \neq \frac{1}{c}$
Lemma 2.1. Consider the linear difference equation

$$
\begin{equation*}
k_{n+1}-(a c+1) k_{n}+a c k_{n-1}=0, \quad n \in \mathbb{N}_{0} \tag{16}
\end{equation*}
$$

with initial conditions $k_{-1}, k_{0} \in \mathbb{R}$. Thus all solutions of equation (16) can be written in the following form

$$
\begin{equation*}
k_{n}=\frac{1}{1-a c}\left[k_{0}\left(1-(a c)^{(n+1)}\right)-a c k_{-1}\left(1-(a c)^{n}\right)\right] . \tag{17}
\end{equation*}
$$

Proof of Lemma 2.1. Thus we have the equation

$$
\begin{equation*}
k_{n+1}-(1+a c) k_{n}+a c k_{n-1}=0 \tag{18}
\end{equation*}
$$

(the homogeneous linear second order difference equation with constant coefficients), where k_{0} and $k_{-1} \in \mathbb{R}$, is usually solved by using the
characteristic roots $\lambda_{1}=a c$ et $\lambda_{2}=1$ of the characteristic polynomial $P(\lambda)=\left(\lambda^{2}-(1+a c) \lambda+a c\right.$, and the formulas of general solution is

$$
k_{n}=c_{1}+c_{2}(a c)^{n}
$$

Using the initial conditions k_{0} and k_{-1}, with some calculations we get

$$
\begin{aligned}
& c_{1}=\frac{k_{0}-k_{-1} a c}{1-a c} \\
& c_{2}=\frac{a c\left(k_{-1}-k_{0}\right)}{1-a c}
\end{aligned}
$$

and the formulas of the general solution is (18) is

$$
\begin{equation*}
k_{n}=\frac{1}{1-a c}\left[k_{0}\left(1-(a c)^{(n+1)}\right)-a c k_{-1}\left(1-(a c)^{n}\right)\right] \tag{19}
\end{equation*}
$$

\checkmark if $a=\frac{1}{c}$

Lemma 2.2. Consider the linear difference equation

$$
\begin{equation*}
k_{n+1}-2 k_{n}+k_{n-1}=0, \quad n \in \mathbb{N}_{0}, \tag{20}
\end{equation*}
$$

with initial conditions $k_{-1}, k_{0} \in \mathbb{R}$. Then all solutions of equation (20) will be written under the form

$$
\begin{equation*}
k_{n}=k_{0}(n+1)-k_{-1} n \tag{21}
\end{equation*}
$$

Proof of Lemma 2.2. Thus we have the equation

$$
\begin{equation*}
k_{n+1}-2 k_{n}+k_{n-1}=0 \tag{22}
\end{equation*}
$$

(the homogeneous linear second order difference equation with constant coefficients), where k_{0} and $k_{-1} \in \mathbb{R}$, is usually solved by using the characteristic roots $\lambda_{1}=\lambda_{2}=1$ of the characteristic polynomial $P(\lambda)=$ $(\lambda-1)^{2}$, and the formulas of general solution is

$$
k_{n}=c_{1}+c_{2} n
$$

Using the initial conditions k_{0} and k_{-1}, with some calculations we get

$$
\begin{aligned}
c_{1} & =k_{0} \\
c_{2} & =k_{0}-k_{-1}
\end{aligned}
$$

And, the general solution of equation (22) obtained is :

$$
\begin{equation*}
k_{n}=k_{0}(n+1)-k_{-1} n . \tag{23}
\end{equation*}
$$

Through an analytical approach. We put

$$
\begin{equation*}
\mathcal{H}_{n}=\frac{k_{n}}{k_{n-1}} \tag{24}
\end{equation*}
$$

which reduces equation (15) to the following one

$$
\begin{equation*}
k_{n+1}=(a c+1) k_{n}-a c k_{n-1} . \tag{25}
\end{equation*}
$$

So, from Lemma (2.1) and Lemma (2.2) we get
\checkmark if $a \neq \frac{1}{c}$

$$
\begin{equation*}
k_{n}=\frac{1}{1-a c}\left[k_{0}\left(1-(a c)^{n+1}\right)-a c k_{-1}\left(1-(a c)^{n}\right)\right] . \tag{26}
\end{equation*}
$$

\checkmark if $a=\frac{1}{c}$

$$
\begin{equation*}
k_{n}=k_{0}(n+1)-k_{-1} n . \tag{27}
\end{equation*}
$$

By substituting the formulas obtained in $(24),(26)$ and (27) into the equation (15) the general solution becomes:
\checkmark if $a \neq \frac{1}{c}$

$$
\mathcal{H}_{n}=\frac{a c\left(1-(a c)^{n}\right)-\mathcal{H}_{0}\left(1-(a c)^{n+1}\right)}{a c\left(1-(a c)^{n-1}\right)-\mathcal{H}_{0}\left(1-(a c)^{n}\right)}
$$

\checkmark if $a=\frac{1}{c}$

$$
\mathcal{H}_{n}=\frac{n-\mathcal{H}_{0}(n+1)}{(n-1)-\mathcal{H}_{0} n}
$$

From all above mentioned we see that the following theorem holds .
Theorem 2.3. Let $\left\{\mathcal{W}_{n}\right\}_{n \geq 0}$ be a solution of (13). Then, for $n=2,3, \ldots$,

$$
\begin{aligned}
& \text { if } a \neq \frac{1}{c} \quad \mathcal{W}_{n}=\frac{\mathcal{W}_{0}}{(a c)^{n}+(a d+b) \mathcal{W}_{0} \sum_{r=0}^{n-1}(a c)^{r}} \\
& \text { if } a=\frac{1}{c} \quad \mathcal{W}_{n}=\frac{\mathcal{W}_{0}}{1+(a d+b) \mathcal{W}_{0} n}
\end{aligned}
$$

With the initial condition $w_{0} \in \mathbb{R}-\mathbb{G}_{1}$, with \mathbb{G}_{1} is the Forbidden Set of system (13) given by

$$
\mathbb{G}_{1}=\bigcup_{n=-1}^{\infty}\left\{\mathcal{W}_{0}:(a c)^{n}+(a d+b) \mathcal{W}_{0} \sum_{r=0}^{n-1}(a c)^{r}=0 \text { or } 1-(a d+b) \mathcal{W}_{0} n=0\right\}
$$

From Theorem (2.3), the solution of equation (12) is given by these formulas

$$
\begin{align*}
& \text { if } a \neq \frac{1}{c} \quad u_{n}^{(j)}=\frac{u_{0}^{(j)}}{(a c)^{n}+(a d+b) u_{0}^{(j)} \sum_{r=0}^{n-1}(a c)^{r} \quad} \quad n \in \mathbb{N}_{0}, j=\{0,1\} . \tag{28}\\
& \text { if } a=\frac{1}{c} \quad u_{n}^{(j)}=\frac{u_{0}^{(j)}}{1+(a d+b) u_{0}^{(j)} n} .
\end{align*}
$$

From theorem(2.3), and formula (11) It is easy to obtain the following corollary.
Corollary 2.4. Let $\left\{u_{n}\right\}_{n \geq 0}$ be a solution of (11). Then

$$
\begin{aligned}
& \text { if } a \neq \frac{1}{c} \quad u_{2 n+j}=\frac{u_{j}}{(a c)^{n}+b(a+1) u_{j} \sum_{r=0}^{n-1}(a c)^{r}} \quad n \in \mathbb{N}_{0}, j=\{0,1\} . \\
& \text { if } a=\frac{1}{c} \quad u_{2 n+j}=\frac{u_{j}}{1+(a d+b) u_{j} n} .
\end{aligned}
$$

where $j \in\{0,1\}$ and $x_{j} \in \mathbb{R}-G_{i}$, with G_{j} is the Forbidden set of equation (12) given by

$$
G_{j}=\bigcup_{n=0}^{\infty}\left\{\left(x_{0}, x_{-1}\right):(a c)^{n}+(a d+b) u_{j} \sum_{r=0}^{n-1}(a c)^{r}=0, \quad \text { or } 1+(a d+b) u_{j} n=0\right\}
$$

Corollary 2.5. Let $\left\{u_{n}\right\}_{n \geq 0}$ be a solution of (9). Then

$$
\begin{gathered}
\text { if } a \neq \frac{1}{c} \quad u_{2 n}=\frac{(a c)^{n}+(a d+b) u_{0} \sum_{r=0}^{n-1}(a c)^{r}}{v_{0}} \\
u_{2 n+1}=\frac{u_{0}}{a^{n+1} c^{n}+v_{0}\left(a d \sum_{r=0}^{n-1}(a c)^{r}+b \sum_{r=0}^{n}(a c)^{r}\right)} \\
v_{2 n}=\frac{v_{0}}{v_{2 n+1}}=\frac{(a c)^{n}+(b c+d) v_{0} \sum_{r=0}^{n-1}(a c)^{r}}{u_{0}} \\
\text { if } a=\frac{1}{c} \quad \\
u_{2 n}=\frac{a^{n} c^{n+1}+u_{0}\left(b c \sum_{r=0}^{n-1}(a c)^{r}+d \sum_{r=0}^{n}(a c)^{r}\right)}{1+(a d+b) n u_{0}}, \\
u_{2 n+1} \\
v_{2 n}=\frac{u_{0}}{a+((a d+b) n+b) v_{0}} \\
v_{2 n+1}=\frac{v_{0}}{1+(b c+d) n v_{0}}, \\
v_{0}+((b c+d) n+d) u_{0}
\end{gathered}
$$

where $n \in \mathbb{N}_{0}$, u_{0} and $v_{0} \in \mathbb{R}-G_{2}$, with G_{2} is the Forbidden set of equation (12).

Proof of Corollary 2.5. Let $\left\{u_{n}, v_{n}\right\}_{n \geq-1}$ be a solution of system (11), so $\left\{u_{n}\right\}_{n \geq-1}$ is a solution of equation (12). Then,
\checkmark if $a \neq \frac{1}{c}$
Let

$$
u_{2 n+1}=\frac{u_{1}}{(a c)^{n}+(a d+b) u_{1} \sum_{r=0}^{n-1}(a c)^{r}},
$$

And $u_{1}=\frac{v_{0}}{a+b v_{0}}$, so

$$
\begin{aligned}
u_{2 n+1} & =\frac{u_{1}}{(a c)^{n}+(a d+b) u_{1} \sum_{r=0}^{n-1}(a c)^{r}}=\frac{v_{0}}{(a c)^{n}\left(a+b v_{0}\right)+(a d+b) v_{0} \sum_{r=0}^{n-1}(a c)^{r}} \\
= & \frac{v_{0}}{a^{n+1} c^{n}+\left[b(a c)^{n}+(a d+b) \sum_{r=0}^{n-1}(a c)^{r}\right] v_{0}} \\
= & a^{v_{0}}
\end{aligned}
$$

\checkmark if $a=\frac{1}{c}$
Let

$$
u_{2 n+1}=\frac{u_{1}}{1+(a d+b) n u_{1}}
$$

et $u_{1}=\frac{v_{0}}{a+b v_{0}}$, so

$$
\begin{aligned}
u_{2 n+1} & =\frac{u_{1}}{1+(a d+b) n u_{1}}=\frac{u_{1}}{a+b v_{0}+(a d+b) n v_{0}} \\
& =\frac{v_{0}}{a+((a d+b) n+b) v_{0}} .
\end{aligned}
$$

In the same way, and using these formulas

$$
v_{2 n}=\frac{u_{2 n-1}}{a+b u_{2 n-1}} \quad \text { and } \quad v_{2 n+1}=\frac{u_{2 n}}{a+b u_{2 n}}
$$

we obtain

$$
\begin{array}{ll}
\text { if } a \neq \frac{1}{c} & v_{2 n}=\frac{v_{0}}{(a c)^{n}+(b c+d) v_{0} \sum_{r=0}^{n-1}(a c)^{r}}, \\
v_{2 n+1} & =\frac{a^{n} c^{n+1}+u_{0}\left(b c \sum_{r=0}^{n-1}(a c)^{r}+d \sum_{r=0}^{n}(a c)^{r}\right)}{\text { if } a=\frac{1}{c}} \quad \\
& v_{2 n}=\frac{v_{0}}{1+(b c+d) n v_{0}}, \\
v_{2 n+1} & =\frac{u_{0}}{c+((b c+d) n+d) u_{0}} .
\end{array}
$$

2.2. Solutions of $u_{n+1}=\frac{v_{n-3}}{a+b v_{n-3}}, \quad v_{n+1}=\frac{u_{n-3}}{c+d u_{n-3}}$. In this section, we discuss the solution of the system (7) by using an appropriate transformation reducing this system to the system of first-order difference equations (9).

Analysis of the form of system. The initial values with the smallest indexes are u_{-3} and v_{-3}. By using (7) with $n=0$, we obtain the values of u_{1} and v_{1} as follows

$$
u_{1}=\frac{v_{-3}}{a+b v_{-3}}, \quad v_{1}=\frac{u_{-3}}{c+d u_{-3}}
$$

Having the u_{1} and v_{1} values, by using (7) with $n=2$ we get the values of u_{3} and v_{3} values

$$
u_{3}=\frac{v_{-1}}{a+b v_{-1}}, \quad v_{3}=\frac{u_{-1}}{c+d u_{-1}}
$$

With u_{3} and v_{3} values, and by using the formula (7) with $n=4$, , we can obtain u_{5} and v_{5} values

$$
\begin{array}{cc}
u_{5}=\frac{v_{1}}{a+b v_{1}}, & v_{5}=\frac{u_{1}}{c+d u_{1}} . \\
\vdots & \vdots \\
u_{4 m+1}=\frac{v_{4 m-1}}{a+b v_{4 m-1}}, & v_{4 m+1}=\frac{u_{4 m-1}}{c+d u_{4 m-1}} .
\end{array}
$$

In the same way, it is shown that the initial values u_{-i} and v_{-i}, for fixed i, with $i \in\{0,1,2,3\}$, determine all the values of the sequences $\left(u_{4(m+1)-i}\right)_{m}$ and $\left(v_{4(m+1)-i}\right)_{m}$. Also we have

$$
\left\{\begin{align*}
u_{4(m+1)-i} & =\frac{v_{4 m-i}}{a+b v_{4 m-i}} \tag{29}\\
v_{4(m+1)-i} & =\frac{u_{4 m-i}}{c+d u_{4 m-i}}
\end{align*}\right.
$$

Let

$$
\left\{\begin{array}{c}
u_{n}^{(i)}=u_{4 n-i}, \tag{30}\\
v_{n}^{(i)}=v_{4 n-i} .
\end{array} \quad i \in\{0,1,2,3\} .\right.
$$

Using notation (30), we can write (7) as

$$
u_{n+1}^{(i)}=\frac{v_{n}^{(i)}}{a+b v_{n}^{(i)}}, \quad v_{n+1}^{(i)}=\frac{u_{n}^{(i)}}{c+d u_{n}^{(i)}}
$$

From all above mentioned we see that the following theorem holds.
Theorem 2.6. Let $\left\{u_{n}, v_{n}\right\}_{n \geq-3}$ be a solution of (7). Then, for $n=-3,-2, \ldots$,

- if $a \neq \frac{1}{c}$
- if $a=\frac{1}{c}$

$$
\left\{\begin{array} { l }
{ u _ { 8 n - 3 } = \frac { u _ { - 3 } } { 1 + (a d + b) n u _ { - 3 } } , } \\
{ u _ { 8 n - 2 } = \frac { u _ { - 2 } } { 1 + (a d + b) n u _ { - 2 } } , } \\
{ u _ { 8 n - 1 } = \frac { u _ { - 1 } } { 1 + (a d + b) n u _ { - 1 } } , } \\
{ u _ { 8 n } = \frac { u _ { 0 } } { 1 + (a d + b) n u _ { 0 } } , }
\end{array} \left\{\begin{array}{l}
u_{8 n+1}=\frac{v_{-3}}{a+((a d+b) n+b) v_{-3}}, \\
u_{8 n+2}=\frac{v_{-2}}{a+((a d+b) n+b) v_{-2}}, \\
u_{8 n+3}=\frac{v_{-1}}{a+((a d+b) n+b) v_{-1}}, \\
u_{8 n+4}=\frac{v_{0}}{a+((a d+b) n+b) v_{0}} .
\end{array}\right.\right.
$$

$$
\left\{\begin{array} { l }
{ v _ { 8 n - 3 } = \frac { v _ { - 3 } } { 1 + (b c + d) n v _ { - 3 } } , } \\
{ v _ { 8 n - 2 } = \frac { v _ { - 2 } } { 1 + (b c + d) n v _ { - 2 } } , } \\
{ v _ { 8 n - 1 } = \frac { v _ { - 1 } } { 1 + (b c + d) n v _ { - 1 } } , } \\
{ v _ { 8 n } = \frac { v _ { 0 } } { 1 + (b c + d) n v _ { 0 } } , }
\end{array} \left\{\begin{array}{l}
v_{8 n+1}=\frac{u_{-3}}{c+((b c+d) n+d) u_{-3}} \\
v_{8 n+2}=\frac{u_{-2}}{c+((b c+d) n+d) u_{-2}} \\
v_{8 n+3}=\frac{u_{-1}}{c+((b c+d) n+d) u_{-1}} \\
v_{8 n+4}=\frac{u_{0}}{c+((b c+d) n+d) u_{0}}
\end{array}\right.\right.
$$

where $n \in \mathbb{N}_{0}, u_{-3}, u_{-2}, u_{-1}, u_{0}, v_{-3}, v_{-2}, v_{-1}$ and $v_{0} \in \mathbb{R}-G_{3}$, with G_{3} is the Forbidden set of system (7).

2.3. Solutions of $x_{n+1}=\frac{y_{n-3} x_{n-4}}{y_{n}\left(a+b y_{n-3} x_{n-4}\right)}, \quad y_{n+1}=\frac{x_{n-3} y_{n-4}}{x_{n}\left(c+d x_{n-3} y_{n-4}\right)}$. Let

$$
\begin{align*}
x_{n} & =\frac{u_{n}}{y_{n-1}} \tag{31}\\
y_{n} & =\frac{v_{n}}{x_{n-1}} \tag{32}
\end{align*}
$$

Using (32) in (31), we obtain

$$
\begin{equation*}
x_{8 n}=\frac{u_{8 n} u_{8 n-2} u_{8 n-4} u_{8 n-6}}{v_{8 n-1} v_{8 n-3} v_{8 n-5} v_{8 n-7}} x_{8 n-8} \tag{33}
\end{equation*}
$$

Using (31) in (32), we obtain

$$
\begin{equation*}
y_{8 n}=\frac{v_{8 n} v_{8 n-2} v_{8 n-4} v_{8 n-6}}{u_{8 n-1} u_{8 n-3} u_{8 n-5} u_{8 n-7}} y_{8 n-8} \tag{34}
\end{equation*}
$$

For $n \in \mathbb{N}$
Multiplying obtained qualities from (33) and (34) from 1 to n, respectively, it follows that

$$
\begin{align*}
x_{8 n} & =x_{0} \prod_{i=0}^{n-1}\left(\frac{u_{8 i} u_{8 i-2} u_{8 i-4} u_{8 i-6}}{v_{8 i-1} v_{8 i-3} v_{8 i-5} v_{8 i-7}}\right) \tag{35}\\
y_{8 n} & =y_{0} \prod_{i=0}^{n-1}\left(\frac{v_{8 i} v_{8 i-2} v_{8 i-4} v_{8 i-6}}{u_{8 i-1} u_{8 i-3} u_{8 i-5} u_{8 i-7}}\right) \tag{36}
\end{align*}
$$

By employing the (35) and (36) in (31) and (32), we obtain

$$
x_{8 n-1}=\frac{v_{8 n}}{y_{8 n}}=\frac{v_{8 n}}{y_{0}} \prod_{i=0}^{n-1}\left(\frac{u_{8 i-1} u_{8 i-3} u_{8 i-5} u_{8 i-7}}{v_{8 i} v_{8 i-2} v_{8 i-4} v_{8 i-6}}\right)
$$

hence, we have

$$
\begin{equation*}
x_{8 n-1}=\frac{v_{8 n}}{y_{0}} \prod_{i=0}^{n-1}\left(\frac{u_{8 i-1} u_{8 i-3} u_{8 i-5} u_{8 i-7}}{v_{8 i} v_{8 i-2} v_{8 i-4} v_{8 i-6}}\right) \tag{37}
\end{equation*}
$$

$$
y_{8 n-1}=\frac{u_{8 n}}{x_{8 n}}=\frac{u_{8 n}}{x_{0}} \prod_{i=0}^{n-1}\left(\frac{v_{8 i-1} v_{8 i-3} v_{8 i-5} v_{8 i-7}}{u_{8 i} u_{8 i-2} u_{8 i-4} u_{8 i-6}}\right)
$$

hence, we have

$$
\begin{equation*}
y_{8 n-1}=\frac{u_{8 n}}{x_{0}} \prod_{i=0}^{n-1}\left(\frac{v_{8 i-1} v_{8 i-3} v_{8 i-5} v_{8 i-7}}{u_{8 i} u_{8 i-2} u_{8 i-4} u_{8 i-6}}\right) . \tag{38}
\end{equation*}
$$

Using the equalities (37) and (38) in (31) and (32), we obtain

$$
x_{8 n-2}=\frac{v_{8 n-1}}{y_{8 n-1}}=x_{0} \frac{v_{8 n-1}}{u_{8 n}} \prod_{i=0}^{n-1}\left(\frac{u_{8 i} u_{8 i-2} u_{8 i-4} u_{8 i-6}}{v_{8 i-1} v_{8 i-3} v_{8 i-5} v_{8 i-7}}\right)
$$

hence, we have

$$
\begin{equation*}
x_{8 n-2}=x_{0} \frac{v_{8 n-1}}{u_{8 n}} \prod_{i=0}^{n-1}\left(\frac{u_{8 i} u_{8 i-2} u_{8 i-4} u_{8 i-6}}{v_{8 i-1} v_{8 i-3} v_{8 i-5} v_{8 i-7}}\right) . \tag{39}
\end{equation*}
$$

And

$$
y_{8 n-2}=\frac{u_{8 n-1}}{x_{8 n-1}}=y_{0} \frac{u_{8 n-1}}{v_{8 n}} \prod_{i=0}^{n-1}\left(\frac{v_{8 i} v_{8 i-2} v_{8 i-4} v_{8 i-6}}{u_{8 i-1} u_{8 i-3} u_{8 i-5} u_{8 i-7}}\right)
$$

so, we have

$$
\begin{equation*}
y_{8 n-2}=y_{0} \frac{u_{8 n-1}}{v_{8 n}} \prod_{i=0}^{n-1}\left(\frac{v_{8 i} v_{8 i-2} v_{8 i-4} v_{8 i-6}}{u_{8 i-1} u_{8 i-3} u_{8 i-5} u_{8 i-7}}\right) . \tag{40}
\end{equation*}
$$

By employing the (39) and (40) in (31) and (32), we obtain

$$
x_{8 n-3}=\frac{v_{8 n-2}}{y_{8 n-2}}=\frac{v_{8 n-2} v_{8 n}}{y_{0} u_{8 n-1}} \prod_{i=0}^{n-1}\left(\frac{u_{8 i-1} u_{8 i-3} u_{8 i-5} u_{8 i-7}}{v_{8 i} v_{8 i-2} v_{8 i-4} v_{8 i-6}}\right)
$$

hence, we have

$$
\begin{equation*}
x_{8 n-3}=\frac{v_{8 n-2} v_{8 n}}{y_{0} u_{8 n-1}} \prod_{i=0}^{n-1}\left(\frac{u_{8 i-1} u_{8 i-3} u_{8 i-5} u_{8 i-7}}{v_{8 i} v_{8 i-2} v_{8 i-4} v_{8 i-6}}\right) . \tag{41}
\end{equation*}
$$

And

$$
y_{8 n-3}=\frac{u_{8 n-2}}{x_{8 n-2}}=\frac{u_{8 n-2} u_{8 n}}{v_{8 n-1} x_{0}} \prod_{i=0}^{n-1}\left(\frac{v_{8 i-1} v_{8 i-3} v_{8 i-5} v_{8 i-7}}{u_{8 i} u_{8 i-2} u_{8 i-4} u_{8 i-6}}\right)
$$

so, we have

$$
\begin{equation*}
y_{8 n-3}=\frac{u_{8 n-2} u_{8 n}}{v_{8 n-1} x_{0}} \prod_{i=0}^{n-1}\left(\frac{v_{8 i-1} v_{8 i-3} v_{8 i-5} v_{8 i-7}}{u_{8 i} u_{8 i-2} u_{8 i-4} u_{8 i-6}}\right) . \tag{42}
\end{equation*}
$$

Using the equalities (41) and (42) in (31) and (32), we obtain

$$
x_{8 n-4}=\frac{v_{8 n-3}}{y_{8 n-3}}=x_{0} \frac{v_{8 n-1} v_{8 n-3}}{u_{8 n-2} u_{8 n}} \prod_{i=0}^{n-1}\left(\frac{u_{8 i} u_{8 i-2} u_{8 i-4} u_{8 i-6}}{v_{8 i-1} v_{8 i-3} v_{8 i-5} v_{8 i-7}}\right)
$$

hence, we have

$$
\begin{equation*}
x_{8 n-4}=x_{0} \frac{v_{8 n-3} v_{8 n-1}}{u_{8 n-2} u_{8 n}} \prod_{i=0}^{n-1}\left(\frac{u_{8 i} u_{8 i-2} u_{8 i-4} u_{8 i-6}}{v_{8 i-1} v_{8 i-3} v_{8 i-5} v_{8 i-7}}\right) \tag{43}
\end{equation*}
$$

And

$$
y_{8 n-4}=\frac{u_{8 n-3}}{x_{8 n-3}}=y_{0} \frac{u_{8 n-3} u_{8 n-1}}{v_{8 n-2} v_{8 n}} \prod_{i=0}^{n-1}\left(\frac{v_{8 i} v_{8 i-2} v_{8 i-4} v_{8 i-6}}{u_{8 i-1} u_{8 i-3} u_{8 i-5} u_{8 i-7}}\right)
$$

so, we have

$$
\begin{equation*}
y_{8 n-4}=y_{0} \frac{u_{8 n-3} u_{8 n-1}}{v_{8 n-2} v_{8 n}} \prod_{i=0}^{n-1}\left(\frac{v_{8 i} v_{8 i-2} v_{8 i-4} v_{8 i-6}}{u_{8 i-1} u_{8 i-3} u_{8 i-5} u_{8 i-7}}\right) \tag{44}
\end{equation*}
$$

Using the equalities (35) and (36) in (31) and (32), we obtain

$$
x_{8 n+1}=\frac{u_{8 n+1}}{y_{8 n}}=\frac{u_{8 n+1}}{y_{0}} \prod_{i=0}^{n-1}\left(\frac{u_{8 i-1} u_{8 i-3} u_{8 i-5} u_{8 i-7}}{v_{8 i} v_{8 i-2} v_{8 i-4} v_{8 i-6}}\right)
$$

hence, we have

$$
\begin{equation*}
x_{8 n+1}=\frac{u_{8 n+1}}{y_{0}} \prod_{i=0}^{n-1}\left(\frac{u_{8 i-1} u_{8 i-3} u_{8 i-5} u_{8 i-7}}{v_{8 i} v_{8 i-2} v_{8 i-4} v_{8 i-6}}\right) \tag{45}
\end{equation*}
$$

And

$$
y_{8 n+1}=\frac{v_{8 n+1}}{x_{8 n}}=\frac{v_{8 n+1}}{x_{0}} \prod_{i=0}^{n-1}\left(\frac{v_{8 i-1} v_{8 i-3} v_{8 i-5} v_{8 i-7}}{u_{8 i} u_{8 i-2} u_{8 i-4} u_{8 i-6}}\right)
$$

so, we have

$$
\begin{equation*}
y_{8 n+1}=\frac{v_{8 n+1}}{x_{0}} \prod_{i=0}^{n-1}\left(\frac{v_{8 i-1} v_{8 i-3} v_{8 i-5} v_{8 i-7}}{u_{8 i} u_{8 i-2} u_{8 i-4} u_{8 i-6}}\right) \tag{46}
\end{equation*}
$$

Using the equalities (45) and (46) in (31) and (32), we obtain

$$
x_{8 n+2}=\frac{u_{8 n+2}}{y_{8 n+1}}=x_{0} \frac{u_{8 n+2}}{v_{8 n+1}} \prod_{i=0}^{n-1}\left(\frac{u_{8 i} u_{8 i-2} u_{8 i-4} u_{8 i-6}}{v_{8 i-1} v_{8 i-3} v_{8 i-5} v_{8 i-7}}\right)
$$

hence, we have

$$
\begin{equation*}
x_{8 n+2}=x_{0} \frac{u_{8 n+2}}{v_{8 n+1}} \prod_{i=0}^{n-1}\left(\frac{u_{8 i} u_{8 i-2} u_{8 i-4} u_{8 i-6}}{v_{8 i-1} v_{8 i-3} v_{8 i-5} v_{8 i-7}}\right) . \tag{47}
\end{equation*}
$$

And

$$
y_{8 n+2}=\frac{v_{8 n+2}}{x_{8 n+1}}=y_{0} \frac{v_{8 n+2}}{u_{8 n+1}} \prod_{i=0}^{n-1}\left(\frac{v_{8 i} v_{8 i-2} v_{8 i-4} v_{8 i-6}}{u_{8 i-1} u_{8 i-3} u_{8 i-5} u_{8 i-7}}\right)
$$

so, we have

$$
\begin{equation*}
y_{8 n+2}=y_{0} \frac{v_{8 n+2}}{u_{8 n+1}} \prod_{i=0}^{n-1}\left(\frac{v_{8 i} v_{8 i-2} v_{8 i-4} v_{8 i-6}}{u_{8 i-1} u_{8 i-3} u_{8 i-5} u_{8 i-7}}\right) . \tag{48}
\end{equation*}
$$

Using the equalities (47) and (48) in (31) and (32), we obtain

$$
x_{8 n+3}=\frac{u_{8 n+3}}{y_{8 n+2}}=\frac{u_{8 n+3} u_{8 n+1}}{y_{0} v_{8 n+2}} \prod_{i=0}^{n-1}\left(\frac{u_{8 i-1} u_{8 i-3} u_{8 i-5} u_{8 i-7}}{v_{8 i} v_{8 i-2} v_{8 i-4} v_{8 i-6}}\right)
$$

hence, we have

$$
\begin{equation*}
x_{8 n+3}=\frac{u_{8 n+3} u_{8 n+1}}{y_{0} v_{8 n+2}} \prod_{i=0}^{n-1}\left(\frac{u_{8 i-1} u_{8 i-3} u_{8 i-5} u_{8 i-7}}{v_{8 i} v_{8 i-2} v_{8 i-4} v_{8 i-6}}\right) . \tag{49}
\end{equation*}
$$

And

$$
y_{8 n+3}=\frac{v_{8 n+3}}{x_{8 n+2}}=\frac{v_{8 n+3} v_{8 n+1}}{x_{0} u_{8 n+2}} \prod_{i=0}^{n-1}\left(\frac{v_{8 i-1} v_{8 i-3} v_{8 i-5} v_{8 i-7}}{u_{8 i} u_{8 i-2} u_{8 i-4} u_{8 i-6}}\right)
$$

so, we have

$$
\begin{equation*}
y_{8 n+3}=\frac{v_{8 n+3} v_{8 n+1}}{x_{0} u_{8 n+2}} \prod_{i=0}^{n-1}\left(\frac{v_{8 i-1} v_{8 i-3} v_{8 i-5} v_{8 i-7}}{u_{8 i} u_{8 i-2} u_{8 i-4} u_{8 i-6}}\right) . \tag{50}
\end{equation*}
$$

Using relationships the theorem (2.6) we conclude the following :

- if $a \neq \frac{1}{c}$

$$
\left\{\begin{array}{c}
u_{8 n-3}=\frac{u_{-3}}{(a c)^{n}+(a d+b) u_{-3} \sum_{r=0}^{n-1}(a c)^{r}} \\
u_{8 n-2}=\frac{u_{-2}}{(a c)^{n}+(a d+b) u_{-2} \sum_{r=0}^{n-1}(a c)^{r}}, \\
u_{8 n-1}=\frac{u_{-1}}{(a c)^{n}+(a d+b) u_{-1} \sum_{r=0}^{n-1}(a c)^{r}}, \\
u_{8 n}=\frac{u_{0}}{(a c)^{n}+(a d+b) u_{0} \sum_{r=0}^{n-1}(a c)^{r}},
\end{array}\right.
$$

$$
\begin{aligned}
& u_{8 n-7}=\frac{v_{-3}}{a^{n} c^{n-1}+v_{-3}\left(a d \sum_{r=0}^{n-2}(a c)^{r}+b \sum_{r=0}^{n-1}(a c)^{r}\right)}, \\
& \begin{aligned}
& u_{8 n-6}= \frac{v_{-2}}{a^{n} c^{n-1}+v_{-2}\left(a d \sum_{r=0}^{n-2}(a c)^{r}+b \sum_{r=0}^{n-1}(a c)^{r}\right)}, \\
& u_{8 n-5}=\frac{v_{-1}}{a^{n} c^{n-1}+v_{-1}\left(a d \sum_{r=0}^{n-2}(a c)^{r}+b \sum_{r=0}^{n-1}(a c)^{r}\right)},
\end{aligned} \\
& u_{8 n-4}=\frac{v_{0}}{a^{n} c^{n-1}+v_{0}\left(a d \sum_{r=0}^{n-2}(a c)^{r}+b \sum_{r=0}^{n-1}(a c)^{r}\right)} . \\
& \left\{v_{8 n-3}=\frac{v_{-3}}{(a c)^{n}+(b c+d) v_{-3} \sum_{r=0}^{n-1}(a c)^{r}},\right. \\
& v_{8 n-2}=\frac{v_{-2}}{(a c)^{n}+(b c+d) v_{-2} \sum_{r=0}^{n-1}(a c)^{r}}, \\
& v_{8 n-1}=\frac{v_{-1}}{(a c)^{n}+(b c+d) v_{-1} \sum_{r=0}^{n-1}(a c)^{r}}, \\
& v_{8 n}=\frac{v_{0}}{(a c)^{n}+(b c+d) v_{0} \sum_{r=0}^{n-1}(a c)^{r}}, \\
& \left\{\begin{array}{l}
v_{8 n-7}=\frac{a^{n-1} c^{n}+u_{-3}\left(b c \sum_{r=0}^{n-2}(a c)^{r}+d \sum_{r=0}^{n-1}(a c)^{r}\right)}{u_{-3}}, \\
v_{8 n-6}=\frac{u^{n-1} c^{n}+u_{-2}\left(b c \sum_{r=0}^{n-2}(a c)^{r}+d \sum_{r=0}^{n-1}(a c)^{r}\right)}{v_{8 n-5}=}, \frac{a^{n-1} c^{n}+u_{-1}\left(b c \sum_{r=0}^{n-2}(a c)^{r}+d \sum_{r=0}^{n-1}(a c)^{r}\right)}{u_{-1}}, \\
v_{8 n-4}= \\
a^{n-1} c^{n}+u_{0}\left(b c \sum_{r=0}^{n-2}(a c)^{r}+d \sum_{r=0}^{n-1}(a c)^{r}\right)
\end{array},\right.
\end{aligned}
$$

- if $a=\frac{1}{c}$

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ u _ { 8 n - 3 } = \frac { u _ { - 3 } } { 1 + (a d + b) n u _ { - 3 } } , } \\
{ u _ { 8 n - 2 } = \frac { u _ { - 2 } } { 1 + (a d + b) n u _ { - 2 } } , } \\
{ u _ { 8 n - 1 } = \frac { u _ { - 1 } } { 1 + (a d + b) n u _ { - 1 } } , } \\
{ u _ { 8 n } = \frac { u _ { 0 } } { 1 + (a d + b) n u _ { 0 } } , }
\end{array} \left\{\begin{array}{rl}
u_{8 n-7} & =\frac{v_{-3}}{a+((a d+b) n-a d) v_{-3}}, \\
u_{8 n-6} & =\frac{v_{-2}}{a+((a d+b) n-a d) v_{-2}}, \\
u_{8 n-5} & =\frac{v_{-1}}{a+((a d+b) n-a d) v_{-1}}, \\
u_{8 n-4} & =\frac{v_{0}}{a+((a d+b) n-a d) v_{0}} .
\end{array}\right.\right. \\
& \left\{\begin{array} { l }
{ v _ { 8 n - 3 } = \frac { v _ { - 3 } } { 1 + (b c + d) n v _ { - 3 } } , } \\
{ v _ { 8 n - 2 } = \frac { v _ { - 2 } } { 1 + (b c + d) n v _ { - 2 } } , } \\
{ v _ { 8 n - 1 } = \frac { v _ { - 1 } } { 1 + (b c + d) n v _ { - 1 } } , } \\
{ v _ { 8 n } = \frac { v _ { 0 } } { 1 + (b c + d) n v _ { 0 } } , }
\end{array} \left\{\begin{array}{l}
v_{8 n-7}=\frac{u_{-3}}{c+((b c+d) n-b c) u_{-3}}, \\
v_{8 n-6}=\frac{u_{-2}}{c+((b c+d) n-b c) u_{-2}}, \\
v_{8 n-5}=\frac{u_{-1}}{c+((b c+d) n-b c) u_{-1}}, \\
v_{8 n-4}=\frac{u_{0}}{c+((b c+d) n-b c) u_{0}} .
\end{array}\right.\right.
\end{aligned}
$$

From all above mentioned and

$$
\begin{gather*}
u_{-1}=x_{-1} y_{-2}, \quad u_{0}=x_{0} y_{-1}, \quad v_{-1}=y_{-1} x_{-2}, \quad v_{0}=y_{0} x_{-1} \tag{51}\\
u_{-2}=x_{-2} y_{-3}, \quad u_{-3}=x_{-3} y_{-4}, \quad v_{-2}=y_{-2} x_{-3}, \quad v_{-3}=y_{-3} x_{-4} . \tag{52}
\end{gather*}
$$

we see that the following result holds.
Theorem 2.7. Let $\left\{x_{n}, y_{n}\right\}_{n \geq-1}$ be a solution of (6). Then, for $n=0,1,2,3, \ldots$,

- if $a \neq \frac{1}{c} \quad\left(a \in \mathbb{R}-\left\{\frac{1}{c}\right\}\right)$
$\begin{aligned} & x_{8 n-4} \\ &= \frac{x_{0}^{n} y_{0}^{n}}{x_{-4}^{n-1} y_{-4}^{n}} \frac{\left((a c)^{n}+x_{-2} y_{-3}(a d+b) \sum_{r=0}^{n-1}(a c)^{r}\right)\left((a c)^{n}+x_{0} y_{-1}(a d+b) \sum_{r=0}^{n-1}(a c)^{r}\right)}{\left((a c)^{n}+y_{-3} x_{-4}(b c+d) \sum_{r=0}^{n-1}(a c)^{r}\right)\left((a c)^{n}+y_{-1} x_{-2}(b c+d) \sum_{r=0}^{n-1}(a c)^{r}\right)} \prod_{i=0}^{n-1} \phi_{i} . \\ & x_{8 n-3} \\ &=\left((a c)^{n}+x_{-1} x_{-4}^{n} y_{-2}^{n}(a d+b) \sum_{r=0}^{n-1}(a c)^{r}\right) \\ & x_{0}^{n} y_{0}^{n}\left((a c)^{n}+y_{-2} x_{-3}(b c+d) \sum_{r=0}^{n-1}(a c)^{r}\right)\left((a c)^{n}+y_{0} x_{-1}(b c+d) \sum_{r=0}^{n-1}(a c)^{r}\right) \\ & \prod_{i=0}^{n-1}\end{aligned} \psi_{i}$.

$$
\begin{aligned}
& x_{8 n-2}=\frac{x_{-2} x_{0}^{n} y_{0}^{n}}{x_{-4}^{n} y_{-4}^{n}} \frac{\left((a c)^{n}+x_{0} y_{-1}(a d+b) \sum_{r=0}^{n-1}(a c)^{r}\right)}{\left((a c)^{n}+y_{-1} x_{-2}(b c+d) \sum_{r=0}^{n-1}(a c)^{r}\right)} \prod_{i=0}^{n-1} \phi_{i} . \\
& x_{8 n-1}=\frac{x_{-4}^{n} y_{-4}^{n}}{x_{0}^{n} y_{0}^{n}} \frac{x_{-1}}{\left((a c)^{n}+y_{0} x_{-1}(b c+d) \sum_{r=0}^{n-1}(a c)^{r}\right)^{i=0}} \prod_{i=1}^{n-1} \psi_{i} \\
& x_{8 n}=\frac{x_{0}^{n+1} y_{0}^{n}}{x_{-4}^{n} y_{-4}^{n}} \prod_{i=0}^{n-1} \phi_{i} . \\
& x_{8 n+1}=\frac{x_{-4}^{n+1} y_{-4}^{n}}{x_{0}^{n} y_{0}^{n+1}} \frac{y_{-3}}{a^{n+1} c^{n}+y_{-3} x_{-4}\left(a d \sum_{r=0}^{n-1}(a c)^{r}+b \sum_{r=0}^{n}(a c)^{r}\right)^{n}} \prod_{i=0}^{n-1} \psi_{i} . \\
& x_{8 n+2}=\frac{y_{-2} x_{0}^{n+1} y_{0}^{n}}{x_{-4}^{n} y_{-4}^{n+1}} \frac{\left(a^{n} c^{n+1}+x_{-3} y_{-4}\left(b c \sum_{r=0}^{n-1}(a c)^{r}+d \sum_{r=0}^{n}(a c)^{r}\right)\right)}{\left(a^{n+1} c^{n}+y_{-2} x_{-3}\left(a d \sum_{r=0}^{n-1}(a c)^{r}+b \sum_{r=0}^{n}(a c)^{r}\right)\right)} \prod_{i=0}^{n-1} \phi_{i} . \\
& x_{8 n+3} \\
& =\frac{\left(\frac{y_{-1} x_{-4}^{n+1} y_{-4}^{n}}{x_{0}^{n} y_{0}^{n+1}}\right)\left(a^{n} c^{n+1}+x_{-2} y_{-3}\left(b c \sum_{r=0}^{n-1}(a c)^{r}+d \sum_{r=0}^{n}(a c)^{r}\right)\right)}{\left(a^{n+1} c^{n}+y_{-1} x_{-2}\left(a d \sum_{r=0}^{n-1}(a c)^{r}+b \sum_{r=0}^{n}(a c)^{r}\right)\right)} \\
& \times \frac{\prod_{i=0}^{n-1} \psi_{i}}{\left(a^{n+1} c^{n}+y_{-3} x_{-4}\left(a d \sum_{r=0}^{n-1}(a c)^{r}+b \sum_{r=0}^{n}(a c)^{r}\right)\right)} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Where } \\
& =\frac{\left((a c)^{i}+y_{-1} x_{-2}(b c+d) \sum_{r=0}^{i-1}(a c)^{r}\right)\left((a c)^{i}+y_{-3} x_{-4}(b c+d) \sum_{r=0}^{i-1}(a c)^{r}\right)}{\left((a c)^{n}+x_{0} y_{-1}(a d+b) \sum_{r=0}^{i-1}(a c)^{r}\right)\left((a c)^{i}+x_{-2} y_{-3}(a d+b) \sum_{r=0}^{i-1}(a c)^{r}\right)} \times \\
& \frac{\left(a^{i-1} c^{n}+x_{-1} y_{-2}\left(b c \sum_{r=0}^{i-2}(a c)^{r}+d \sum_{r=0}^{i-1}(a c)^{r}\right)\right)}{\left(a^{i} c^{i-1}+y_{0} x_{-1}\left(a d \sum_{r=0}^{i-2}(a c)^{r}+b \sum_{r=0}^{i-1}(a c)^{r}\right)\right)} \times \\
& \left(a^{i-1} c^{i}+x_{-3} y_{-4}\left(b c \sum_{r=0}^{i-2}(a c)^{r}+d \sum_{r=0}^{i-1}(a c)^{r}\right)\right) \\
& \overline{\left(a^{i} c^{i-1}+y_{-2} x_{-3}\left(a d \sum_{r=0}^{i-2}(a c)^{r}+b \sum_{r=0}^{i-1}(a c)^{r}\right)\right)}, \\
& \psi_{i}=\frac{\left((a c)^{i}+y_{0} x_{-1}(b c+d) \sum_{r=0}^{i-1}(a c)^{r}\right)\left((a c)^{i}+y_{-2} x_{-3}(b c+d) \sum_{r=0}^{i-1}(a c)^{r}\right)}{\left((a c)^{i}+x_{-1} y_{-2}(a d+b) \sum_{r=0}^{i-1}(a c)^{r}\right)\left((a c)^{i}+x_{-3} y_{-4}(a d+b) \sum_{r=0}^{i-1}(a c)^{r}\right)} \times \\
& \left(a^{i-1} c^{n}+x_{0} y_{-1}\left(b c \sum_{r=0}^{i-2}(a c)^{r}+d \sum_{r=0}^{i-1}(a c)^{r}\right)\right) \\
& \overline{\left(a^{i} c^{i-1}+y_{-1} x_{-2}\left(a d \sum_{r=0}^{i-2}(a c)^{r}+b \sum_{r=0}^{i-1}(a c)^{r}\right)\right)} \\
& \left(a^{i-1} c^{i}+x_{-2} y_{-3}\left(b c \sum_{r=0}^{i-2}(a c)^{r}+d \sum_{r=0}^{i-1}(a c)^{r}\right)\right) \\
& \left(a^{i} c^{i-1}+y_{-3} x_{-4}\left(a d \sum_{r=0}^{i-2}(a c)^{r}+b \sum_{r=0}^{i-1}(a c)^{r}\right)\right) . \\
& \text { Or } \\
& y_{8 n-4}=\frac{x_{0}^{n} y_{0}^{n}}{x_{-4}^{n} y_{-4}^{n-1}} \frac{\left((a c)^{n}+y_{-2} x_{-3}(b c+d) \sum_{r=0}^{n-1}(a c)^{r}\right)\left((a c)^{n}+y_{0} x_{-1}(b c+d) \sum_{r=0}^{n-1}(a c)^{r}\right)}{\left((a c)^{n}+x_{-3} y_{-4}(a d+b) \sum_{r=0}^{n-1}(a c)^{r}\right)\left((a c)^{n}+(a d+b) x_{-1} y_{-2} \sum_{r=0}^{n-1}(a c)^{r}\right)^{n-1}} \prod_{i=0} \chi_{i} . \\
& y_{8 n-3}=\frac{y_{-3} x_{-4}^{n} y_{-4}^{n}}{x_{0}^{n} y_{0}^{n}} \frac{\left((a c)^{n}+y_{-1} x_{-2}(b c+d) \sum_{r=0}^{n-1}(a c)^{r}\right)}{\left((a c)^{n}+x_{-2} y_{-3}(a d+b) \sum_{r=0}^{n-1}(a c)^{r}\right)\left((a c)^{n}+x_{0} y_{-1}(a d+b) \sum_{r=0}^{n-1}(a c)^{r}\right)^{2}} \prod_{i=0}^{n-1} \xi_{i} .
\end{aligned}
$$

$$
\begin{aligned}
& y_{8 n-2}=\frac{y_{-2} x_{0}^{n} y_{0}^{n}}{x_{-4}^{n} y_{-4}^{n}} \frac{\left((a c)^{n}+y_{0} x_{-1}(b c+d) \sum_{r=0}^{n-1}(a c)^{r}\right)}{\left((a c)^{n}+x_{-1} y_{-2}(a d+b) \sum_{r=0}^{n-1}(a c)^{r}\right)} \prod_{i=0}^{n-1} \chi_{i} . \\
& y_{8 n-1}=\frac{x_{-4}^{n} y_{-4}^{n}}{x_{0}^{n} y_{0}^{n}} \frac{y_{-1}}{\left((a c)^{n}+x_{0} y_{-1}(a d+b) \sum_{r=0}^{n-1}(a c)^{r}\right)^{2}} \prod_{i=0}^{n-1} \xi_{i} \\
& y_{8 n}=\frac{x_{0}^{n} y_{0}^{n+1}}{x_{-4}^{n} y_{-4}^{n}} \prod_{i=0}^{n-1} \chi_{i} . \\
& y_{8 n+1}=\frac{x_{-4}^{n} y_{-4}^{n+1}}{x_{0}^{n+1} y_{0}^{n}} \frac{x_{-3}}{\left(a^{n} c^{n+1}+x_{-3} y_{-4}\left(b c \sum_{r=0}^{n-1}(a c)^{r}+d \sum_{r=0}^{n}(a c)^{r}\right)\right)} \prod_{i=0}^{n-1} \xi_{i} . \\
& y_{8 n+2}=\frac{x_{-2} x_{0}^{n} y_{0}^{n+1}}{x_{-4}^{n+1} y_{-4}^{n}} \frac{\left(a^{n+1} c^{n}+y_{-3} x_{-4}\left(a d \sum_{r=0}^{n-1}(a c)^{r}+b \sum_{r=0}^{n}(a c)^{r}\right)\right)}{\left(a^{n} c^{n+1}+x_{-2} y_{-3}\left(b c \sum_{r=0}^{n-1}(a c)^{r}+d \sum_{r=0}^{n}(a c)^{r}\right)\right)} \prod_{i=0}^{n-1} \chi_{i} . \\
& y_{8 n+3}=\frac{\left(\frac{x_{-1} x_{-4}^{n} y_{-4}^{n+1}}{x_{0}^{n+1} y_{0}^{n}}\right)\left(a^{n+1} c^{n}+y_{-2} x_{-3}\left(a d \sum_{r=0}^{n-1}(a c)^{r}+b \sum_{r=0}^{n}(a c)^{r}\right)\right)}{\left(a^{n} c^{n+1}+x_{-1} y_{-2}\left(b c \sum_{r=0}^{n-1}(a c)^{r}+d \sum_{r=0}^{n}(a c)^{r}\right)\right)} \\
& \times \frac{\prod_{i=0}^{n-1} \xi_{i}}{\left(a^{n} c^{n+1}+x_{-3} y_{-4}\left(b c \sum_{r=0}^{n-1}(a c)^{r}+d \sum_{r=0}^{n}(a c)^{r}\right)\right)} .
\end{aligned}
$$

$$
\begin{array}{r}
\text { Where } \begin{array}{r}
\left((a c)^{i}+x_{-1} y_{-2}(a d+b) \sum_{r=0}^{i-1}(a c)^{r}\right)\left((a c)^{i}+x_{-3} y_{-4}(a d+b) \sum_{r=0}^{i-1}(a c)^{r}\right) \\
\left.\chi_{i}(a c)^{i}+y_{0} x_{-1}(b c+d) \sum_{r=0}^{i-1}(a c)^{r}\right)\left((a c)^{i}+y_{-2} x_{-3}(b c+d) \sum_{r=0}^{i-1}(a c)^{r}\right)
\end{array} \\
\frac{\left(a^{i} c^{i-1}+y_{-1} x_{-2}\left(a d \sum_{r=0}^{i-2}(a c)^{r}+b \sum_{r=0}^{i-1}(a c)^{r}\right)\right)^{2}}{\left(a^{i-1} c^{i}+x_{0} y_{-1}\left(b c \sum_{r=0}^{i-2}(a c)^{r}+d \sum_{r=0}^{i-1}(a c)^{r}\right)\right)} \times \\
\frac{\left(a^{i} c^{i-1}+y_{-3} x_{-4}\left(a d \sum_{r=0}^{i-2}(a c)^{r}+b \sum_{r=0}^{i-1}(a c)^{r}\right)\right)}{\left(a^{i-1} c^{i}+x_{-2} y_{-3}\left(b c \sum_{r=0}^{i-2}(a c)^{r}+d \sum_{r=0}^{i-1}(a c)^{r}\right)\right)},
\end{array}
$$

$$
\begin{gathered}
\xi_{i}=\frac{\left((a c)^{i}+x_{0} y_{-1}(a d+b) \sum_{r=0}^{i-1}(a c)^{r}\right)\left((a c)^{i}+x_{-2} y_{-3}(a d+b) \sum_{r=0}^{i-1}(a c)^{r}\right)}{\left((a c)^{i}+y_{-1} x_{-2}(b c+d) \sum_{r=0}^{i-1}(a c)^{r}\right)\left((a c)^{i}+y_{-3} x_{-4}(b c+d) \sum_{r=0}^{i-1}(a c)^{r}\right)} \times \\
\frac{\left(a^{i} c^{i-1}+y_{0} x_{-1}\left(a d \sum_{r=0}^{i-2}(a c)^{r}+b \sum_{r=0}^{i-1}(a c)^{r}\right)\right)}{\left(a^{i-1} c^{i}+x_{-1} y_{-2}\left(b c \sum_{r=0}^{i-2}(a c)^{r}+d \sum_{r=0}^{i-1}(a c)^{r}\right)\right)} \times \\
\frac{\left(a^{i} c^{i-1}+y_{-2} x-3\left(a d \sum_{r=0}^{i-2}(a c)^{r}+b \sum_{r=0}^{i-1}(a c)^{r}\right)\right)}{\left(a^{i-1} c^{i}+x_{-3} y_{-4}\left(b c \sum_{r=0}^{i-2}(a c)^{r}+d \sum_{r=0}^{i-1}(a c)^{r}\right)\right)} .
\end{gathered}
$$

- if $a=\frac{1}{c}$.

$$
\begin{gathered}
x_{8 n-4}=\frac{x_{0}^{n} y_{0}^{n}}{x_{-4}^{n-1} y_{-4}^{n}} \frac{\left(1+x_{-2} y_{-3}(a d+b) n\right)\left(1+x_{0} y_{-1}(a d+b) n\right)}{\left(1+y_{-3} x_{-4}(b c+d) n\right)\left(1+y_{-1} x_{-2}(b c+d) n\right)} \prod_{i=0}^{n-1} \phi_{i} . \\
x_{8 n-3}=\frac{x_{-3} x_{-4}^{n} y_{-4}^{n}}{x_{0}^{n} y_{0}^{n}} \frac{\left(1+x_{-1} y_{-2}(a d+b) n\right)}{\left(1+y_{-2} x_{-3}(b c+d) n\right)\left(1+(b c+d) n v_{0}\right)} \prod_{i=0}^{n-1} \psi_{i} . \\
x_{8 n-2}=\frac{x_{-2} x_{0}^{n} y_{0}^{n}}{x_{-4}^{n} y_{-4}^{n}} \frac{\left(1+x_{0} y_{-1}(a d+b) n\right)}{\left(1+y_{-1} x_{-2}(b c+d) n\right)} \prod_{i=0}^{n-1} \phi_{i} . \\
x_{8 n-1}=\frac{x_{-4}^{n} y_{-4}^{n}}{x_{0}^{n} y_{0}^{n}} \frac{x_{-1}}{\left(1+y_{0} x_{-1}(b c+d) n\right)} \prod_{i=0}^{n-1} \psi_{i} . \\
x_{8 n}=\frac{x_{0}^{n+1} y_{0}^{n}}{x_{-4}^{n} y_{-4}^{n}} \prod_{i=0}^{n-1} \phi_{i} .
\end{gathered}
$$

$$
x_{8 n+1}=\frac{x_{-4}^{n+1} y_{-4}^{n}}{x_{0}^{n} y_{0}^{n+1}} \frac{y_{-3}}{\left(a+y_{-3} x_{-4}((a d+b) n+b)\right)} \prod_{i=0}^{n-1} \psi_{i}
$$

$$
x_{8 n+2}=\frac{y_{-2} x_{0}^{n+1} y_{0}^{n}}{x_{-4}^{n} y_{-4}^{n+1}} \frac{\left(c+x_{-3} y_{-4}((b c+d) n+d)\right)}{\left(a+y_{-2} x_{-3}((a d+b) n+b)\right)} \prod_{i=0}^{n-1} \phi_{i} .
$$

$$
x_{8 n+3}=\frac{y_{-1} x_{-4}^{n+1} y_{-4}^{n}}{x_{0}^{n} y_{0}^{n+1}} \frac{\left(c+x_{-2} y_{-3}((b c+d) n+d)\right)}{\left(a+y_{-1} x_{-2}((a d+b) n+b)\right)\left(a+y_{-3} x_{-4}((a d+b) n+b)\right)} \prod_{i=0}^{n-1} \psi_{i} .
$$

Where

$$
\begin{aligned}
& \phi_{i}= \frac{\left(1+y_{-1} x_{-2}(b c+d) i\right)\left(1+y_{-3} x_{-4}(b c+d) i\right)}{\left(1+x_{0} y_{-1}(a d+b) i\right)\left(1+x_{-2} y_{-3}(a d+b) i\right)} \times \\
& \quad \frac{\left(c+x_{-1} y_{-2}((b c+d) i-b c)\right)\left(c+x_{-3} y_{-4}((b c+d) i-b c)\right)}{\left(a+y_{0} x_{-1}((a d+b) i-a d)\right)\left(a+y_{-2} x_{-3}((a d+b) i-a d)\right)} .
\end{aligned}
$$

Where

$$
\begin{array}{r}
\chi_{i}=\frac{\left(1+x_{-1} y_{-2}(a d+b) i\right)\left(1+x_{-3} y_{-4}(a d+b) i\right)}{\left(1+y_{0} x_{-1}(b c+d) i\right)\left(1+y_{-2} x_{-3}(b c+d) i\right)} \times \\
\\
\frac{\left(a+y_{-1} x_{-2}((a d+b) i-a d)\right)\left(a+y_{-3} x_{-4}((a d+b) i-a d)\right)}{\left(c+x_{0} y_{-1}((b c+d) i-b c)\right)\left(c+x_{-2} y_{-3}((b c+d) i-b c)\right)} .
\end{array}
$$

$$
\xi_{i}=\frac{\left(1+x_{0} y_{-1}(a d+b) i\right)\left(1+x_{-2} y_{-3}(a d+b) i\right)}{\left(1+y_{-1} x_{-2}(b c+d) i\right)\left(1+y_{-3} x_{-4}(b c+d) i\right)} \quad \times
$$

$$
\frac{\left(a+y_{0} x_{-1}((a d+b) i-a d)\right)\left(a+y_{-2} x_{-3}((a d+b) i-a d)\right)}{\left(c+x_{-1} y_{-2}((b c+d) i-b c)\right)\left(c+x_{-3} y_{-4}((b c+d) i-b c)\right)}
$$

$$
\begin{aligned}
& \psi_{i}=\frac{\left(1+y_{0} x_{-1}(b c+d) i\right)\left(1+y_{-2} x_{-3}(b c+d) i\right)}{\left(1+x_{-1} y_{-2}(a d+b) i\right)\left(1+x_{-3} y_{-4}(a d+b) i\right)} \times \\
& \frac{\left(c+x_{0} y_{-1}((b c+d) i-b c)\right)\left(c+x_{-2} y_{-3}((b c+d) i-b c)\right)}{\left(a+y_{-1} x_{-2}((a d+b) i-a d)\right)\left(a+y_{-3} x_{-4}((a d+b) i-a d)\right)} . \\
& \text { Or } \\
& y_{8 n-4}=\frac{x_{0}^{n} y_{0}^{n}}{x_{-4}^{n} y_{-4}^{n-1}} \frac{\left(1+y_{-2} x_{-3}(b c+d) n\right)\left(1+y_{0} x_{-1}(b c+d) n\right)}{\left(1+x_{-3} y_{-4}(a d+b) n\right)\left(1+x_{-1} y_{-2}(a d+b) n\right)} \prod_{i=0}^{n-1} \chi_{i} . \\
& y_{8 n-3}=\frac{y_{-3} x_{-4}^{n} y_{-4}^{n}}{x_{0}^{n} y_{0}^{n}} \frac{\left(1+y_{-1} x_{-2}(b c+d) n\right)}{\left(1+x_{-2} y_{-3}(a d+b) n\right)\left(1+x_{0} y_{-1}(a d+b) n\right)} \prod_{i=0}^{n-1} \xi_{i} . \\
& y_{8 n-2}=\frac{y_{-2} x_{0}^{n} y_{0}^{n}}{x_{-4}^{n} y_{-4}^{n}} \frac{\left(1+y_{0} x_{-1}(b c+d) n\right)}{\left(1+x_{-1} y_{-2}(a d+b) n\right)} \prod_{i=0}^{n-1} \chi_{i} . \\
& y_{8 n-1}=\frac{x_{-4}^{n} y_{-4}^{n}}{x_{0}^{n} y_{0}^{n}} \frac{y_{-1}}{\left(1+x_{0} y_{-1}(a d+b) n\right)} \prod_{i=0}^{n-1} \xi_{i} . \\
& y_{8 n}=\frac{x_{0}^{n} y_{0}^{n+1}}{x_{-4}^{n} y_{-4}^{n}} \prod_{i=0}^{n-1} \chi_{i} . \\
& y_{8 n+1}=\frac{x_{-4}^{n} y_{-4}^{n+1}}{x_{0}^{n+1} y_{0}^{n}} \frac{x_{-3}}{\left(c+x_{-3} y_{-4}((b c+d) n+d)\right)} \prod_{i=0}^{n-1} \xi_{i} . \\
& y_{8 n+2}=\frac{x_{-2} x_{0}^{n} y_{0}^{n+1}}{x_{-4}^{n+1} y_{-4}^{n}} \frac{\left(a+y_{-3} x_{-4}((a d+b) n+b)\right)}{\left(c+x_{-2} y_{-3}((b c+d) n+d)\right)} \prod_{i=0}^{n-1} \chi_{i} . \\
& y_{8 n+3}=\frac{x_{-1} x_{-4}^{n} y_{-4}^{n+1}}{x_{0}^{n+1} y_{0}^{n}} \frac{\left(a+y_{-2} x_{-3}((a d+b) n+b)\right)}{\left(c+x_{-1} y_{-2}((b c+d) n+d)\right)\left(c+x_{-3} y_{-4}((b c+d) n+d)\right)} \prod_{i=0}^{n-1} \xi_{i} .
\end{aligned}
$$

3. Conclusion

In this study, we mainly obtained solutions to the rational difference equations system.

$$
x_{n+1}=\frac{y_{n-3} x_{n-4}}{y_{n}\left(a+b y_{n-3} x_{n-4}\right)}, \quad y_{n+1}=\frac{x_{n-3} y_{n-4}}{x_{n}\left(c+d x_{n-3} y_{n-4}\right)}, \quad n=0,1, \cdots,
$$

where parameters a, b, c and d are executed separately and initial conditions $x_{-4}, x_{-3}, x_{-2}, x_{-1}, x_{0}, y_{-4}, y_{-3}, y_{-2}, y_{-1}$ and y_{0} are non zero real numbers.

4. Future works

The results in this paper can be extended to the following system of difference equations
$x_{n+1}=\frac{y_{n-k} x_{n-(k+1)}}{y_{n}\left(a+b y_{n-k} x_{n-(k+1)}\right)}, \quad y_{n+1}=\frac{x_{n-k} y_{n-(k+1)}}{x_{n}\left(c+d x_{n-k} y_{n-(k+1)}\right)}, \quad n=0,1, \cdots$,
where $k \in \mathbb{N}$ the initial conditions x_{-j} and y_{-j} are non zero real numbers, $j=\overline{0,(k+1)}$.

References

1. M.M. Alzubaidi and E.M. Elsayed, analytical and solutions of fourth order difference equations. Communications in Advanced Mathematical Sciences 2 (2019), 9-21.
2. M.B. Almatrafi, Solutions structures for some systems of fractional difference equations, Open J. Math. Anal. 3 (2019), 52-61.
3. Y. Akrour, N. Touafek, Y. Halim, On system of difference equations of second order solved in closed-form, Miskolc Mathematical Notes 20 (2019), 701-717.
4. M.B. Almatrafi, E.M. Elsayed, Solutions and formulae for some systems of difference equations, MathLAB Journal 1 (2018), 356-369.
5. M.B. Almatrafi, and M.M. Alzubaidi, Analysis of the qualitative behaviour of an eighthorder fractional difference equation, Open J. Discret. Appl. Math. 2 (2019), 41-47.
6. R. Abo-Zeid and H. Kamal, Global behavior of two Rational third order difference equations, Univers. J. Math. Appl. 2 (2019), 212-217.
7. E.M. Elsayed, Solution for systems of difference equations of rational form of order two, Comp. Appl. Mat. 33 (2014), 751-765.
8. E.M. Elsayed and T.F. Ibrahim, Periodicity and solutions for some systems of nonlinear rational difference equations, Hacet. J. Math. stat. 44 (2015), 1361-1390.
9. M.M. El-Dessoky, Solution for rational rystems of difference equations of order three, Mathematics 4 (2016), 1-12.
10. M.M. El-Dessoky, A. Khaliq, Asim Asiri, On some rational systems of difference equations, J. Nonlinear Sci. Appl. 11 (2018), 49-72 .
11. M. Gümüş, On a competitive system of rational difference equations, Univers. J. Math. Appl. 2 (2019), 224-228.
12. Y. Halim, M. Berkal and A. Khelifa, On a three-dimensional solvable system of difference equations, Turk. J. Math. 44 (2020), 1263-1288.
13. Y. Halim, A. Khelifa and M. Berkal, Representation of solutions of a two-dimensional system of difference equations, Miskolc Mathematical Notes 21 (2020), 203-218.
14. Y. Halim, Global character of systems of rational difference equations, Electron. J. Math. Analysis Appl. 3 (2015), 204-214 .
15. Y. Halim, A system of difference equations with solutions associated to Fibonacci numbers, Int. J Difference Equ. 11 (2016), 65-77.
16. Y. Halim, N. Touafek, Y. Yazlik Dynamic behavior of a second-order nonlinear rational difference equation, Turk. J. Math. 39 (2015), 1004-1018.
17. N. Haddad, J.F.T. Rabago, Dynamics of a system of k-difference equations, Electron. J. Math. Analysis Appl. 5 (2017), 242-249 .
18. T.F. Ibrahim and N. Touafek, Max-type system of difference equations with positive twoperiodic sequences, Math. Meth. Appl. Sci. 37 (2014), 2562-2569.
19. T.F. Ibrahim, Periodicity and global attractivity of difference equation of higher order, J. Comput. Anal. Appl. 16 (2014), 552-564.
20. T.F. Ibrahim, Solution and Behavior of a Rational Recursive Sequence of order Four, Australian Journal of Basic and Applied Sciences, 7 (2013), 816-830.
21. M. Kara and Y. Yazlik, Solvability of a system of nonlinear difference equations of higher order, Turk. J. Math. 43 (2019), 1533-1565.
22. M. Kara, Y. Yazlik and D.T. Tollu, Solvability of a system of hsggher order nonlinear difference equations, Hacettepe Journal of Mathematics and Statistics 49 (2020), 15661593.
23. M. Kara and Y. Yazlik, On a solvable three-dimensional system of difference equations, Filomat 34 (2020), 1167-1186.
24. M. Kara, N. Touafek and Y. Yazlik, Well-defined solutions of a three-dimensional system of difference equations, Gazi University Journal of Science 3 (2020), 767-778.
25. M. Kara, D.T. Tollu and Y. Yazlik, Global behavior of two-dimensional difference equations system with two periodic coefficients, Tbilisi Mathematical Journal 4 (2020), 49-64.
26. M. Kara, Y. Yazlik, N. Touafek and Y. Akrour, On a three-dimensional system of difference equations with variable coefficients, Journal of Applied Mathematics and Informatics In press.
27. M. Kara and Y. Yazlik, On the system of difference equations $x_{n}=$ $\frac{x_{n-2} y_{n-3}}{y_{n-1}\left(a_{n}+b_{n} x_{n-2} y_{n-3}\right)}, y_{n}=\frac{y_{n-2} x_{n-3}}{x_{n-1}\left(\alpha_{n}+\beta_{n} y_{n-2} x_{n-3}\right)}$, Journal of Mathematical Extension 14 (2020), 41-59.
28. A. Khelifa, Y. Halim and M. Berkal, Solutions of a system of two higher-order difference equations in terms of Lucas sequence, Univers. J. Math. Appl. 2 (2019), 202-211.
29. A. Khelifa, Y. Halim, A. Bouchair and M. Berkal, On a system of three difference equations of higher order solvedin terms of Lucas and Fibonacci numbers, Math. Slovaca 70 (2020), 641-656.
30. A.Q. Khan, Q. Din, M.N. Qureshi and T.F. Ibrahim, Global behavior of an anticompetitive system of fourth-order rational difference equations, Computational Ecology and Software 4 (2014), 35-46.
31. S. Stevic, Representation of solutions of bilinear difference equations in terms of generalized Fibonacci sequences, Electron. J. Qual. Theory Differ. Equ. 67 (2014), 15 pages.
32. S. Stevic, On some solvable systems of difference equations, Appl. Math. Comput. 218 (2012), 5010-5018.
33. S. Stevic, M.A. Alghamdi, A. Alotaibi, E.M. Elsayed On a Class of Solvable Higher-Order Difference Equations, Filomat 31 (2017), 461-477.
34. N. Touafek and E.M. Elsayed, On the solutions of systems of rational difference equations, Math. Comput. Modelling 55 (2012), 1987-1997.
35. Y. Yazlik, D.T. Tollu and N. Taskara, Behaviour of solutions for a system of two higherorder difference equations, J. Sci. Arts. 45 (2018), 813-826.
36. Y. Yazlik, M. Kara, Beşinci Mertebeden Fark Denklem Sisteminin Çözülebilirliği Üzerine, Eskişehir Technical University Journal of Science and Technology B-Theoretical Sciences 7 (2019), 29-45.
37. Y. Yazlik and M. Kara, On a solvable system of difference equations of higher order with period two coefficients, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 (2019), 1675-1693.
M. BERKAL is currently working on his doctoral dissertation in the field of Difference Equations and Bifurcation of Discrete Dynamical Systems. He has published several papers devoted to analytical solutions to some type of rational higher order difference systems.

Department of Applied Mathematics, University of Alicante, Alicante, Spain.
e-mail: berkalmessaoud@gmail.com, mb299@gcloud.ua.es
K. BEREHAL A master's student in Applied Mathematics, who obtained a master's degree in 2020 , interested in the field of linear and nonlinear difference equations.
Abdelhafid Boussouf University, Department of Mathematics and Computer Science, RP 26 Mila 43000, Mila, Algeria.
e-mail: khawlamathematiques@gmail.com
N. REZAIKI is a Ph.D. student in mathematics. His interrest is about the determination of the limit cycles of polynomial differential systems in \mathbb{R}^{2}.

Abdelhafid Boussouf University, Department of Mathematics and Computer Science, RP 26 Mila 43000, Mila, Algeria.
e-mail: rnabil773@gmail.com

[^0]: Received October 20, 2020. Revised February 19, 2021. Accepted January 28, 2022. * Corresponding author.
 (C) 2022 KSCAM.

