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REPRESENTATION OF SOLUTIONS OF A SYSTEM OF

FIVE-ORDER NONLINEAR DIFFERENCE EQUATIONS

M. BERKAL∗, K. BEREHAL AND N. REZAIKI

Abstract. In this paper, we deal with the existence of solutions of the
following system of nonlinear rational difference equations with order five

xn+1 =
yn−3xn−4

yn(a+ byn−3xn−4)
, yn+1 =

xn−3yn−4

xn(c+ dxn−3yn−4)
, n = 0, 1, · · · ,

where parameters a, b, c and d are not executed at the same time and initial
conditions x−4, x−3, x−2, x−1, x0, y−4, y−3, y−2, y−1 and y0 are non zero

real numbers.
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1. Introduction

The theory of difference equations developed greatly during the last twenty-
five years of the twentieth century. The applications of the theory of difference
equations is rapidly increasing to various fields such as numerical analysis, eco-
nomics,biology, control theory, finite computer science and mathematics.
Thus, there is every reason for studying the theory of difference equations as a
well deserved discipline.
The are many papers related to the difference equations systems for example,
solvability of a systems of nonlinear difference equations of higher order .

xn =
xn−kyn−k−l

yn−l(an + bnxn−kyn−k−l)
, yn =

yn−kxn−k−l

xn−l(αn + βnyn−kxn−k−l)
, (1)

has been studied by Kara et al. in [21].
El-Dessoky et. al [10] has studied the following systems of difference equations

xn+1 =
xn−3yn−4

yn(±1± xn−3yn−4)
, yn+1 =

yn−3xn−4

xn(±1± yn−3xn−4)
. (2)
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Stević et al [33] have got the solutions of the equation

xn =
xn−2xn−k−2

xn−k(an + bnxn−2xn−k−2)
, (3)

Elsayed et al [8] found Periodicity and solutions for some systems of nonlinear
rational difference equations

xn+1 =
xn−2yn−1

yn(±1± xn−2yn−1)
, yn+1 =

yn−2xn−1

xn(±1± yn−2xn−1)
. (4)

Yazlik and kara [36] gave the solution of the following systems of difference
equations

xn =
xn−4yn−5

yn−1(an + bnxn−2yn−3xn−4yn−5)
, yn =

yn−4xn−5

xn−1(αn + βnyn−2xn−3yn−4xn−5)
.

(5)
Similar nonlinear systems of rational difference equations were studied [7], [10],
[30], [20],[21].

Motivated by the above mentioned papers in this paper , we show that we
are able to express in a closed form the well defined solutions of the following
system of difference equations

xn+1 =
yn−3xn−4

yn(a+ byn−3xn−4)
, yn+1 =

xn−3yn−4

xn(c+ dxn−3yn−4)
.

where n ∈ N0, a, b, c, d and initial valuesx−4, x−3, x−2, x−1, x0, y−4, y−3, y−2, y−1

and y0 are nonzero real numbers.

2. Main results

In this section, we investigate the solutions of the system of difference equa-
tions

xn+1 =
yn−3xn−4

yn(a+ byn−3xn−4)
, yn+1 =

xn−3yn−4

xn(c+ dxn−3yn−4)
. (6)

where n ∈ N0 and the initial conditions x−4, x−3, x−2, x−1, x0, y−4, y−3, y−2, y−1

and y0 are arbitrary non zero real numbers.
So, the system (6) can be written as the following system

un+1 =
vn−3

a+ bvn−3
, vn+1 =

un−3

c+ dun−3
, (7)

Using the following change of variables{
un = xnyn−1,
vn = ynxn−1.

(8)
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2.1. Solutions of un+1 = vn
a+bvn

, vn+1 = un

c+dun
. Here, to give a closed form

for the well defined solutions of the system (7), We consider the system of two
difference equations nonlinear first-order .

un+1 =
vn

a+ bvn
, vn+1 =

un

c+ dun
n ≥ 0 (9)

The system (9) can be written as the following equation

un+1 =
un−1

ac+ (ad+ b)un−1
, n ≥ 1. (10)

Let

u(j)
n = u2n+j , n ∈ N0, j ∈ {0, 1}. (11)

Using notation (11), we can write (10) as

u
(j)
n+1 =

u
(j)
n

ac+ (ad+ b)u
(j)
n

. (12)

where j ∈ {0, 1}.
Now consider the equation

Wn+1 =
Wn

ac+ (ad+ b)Wn
. (13)

Using the change of variables

Wn =
1

(ad+ b)
(Hn − ac) . (14)

we can write (13) as

Hn+1 =
(ac+ 1)Hn − ac

Hn
. (15)

To obtain solutions of equation (15), let’s review the following lemmas.

✓ if a ̸= 1
c

Lemma 2.1. Consider the linear difference equation

kn+1 − (ac+ 1)kn + ackn−1 = 0, n ∈ N0, (16)

with initial conditions k−1, k0 ∈ R. Thus all solutions of equation (16)
can be written in the following form

kn =
1

1− ac

[
k0

(
1− (ac)(n+1)

)
− ack−1 (1− (ac)n)

]
. (17)

Proof of Lemma 2.1. Thus we have the equation

kn+1 − (1 + ac)kn + ackn−1 = 0. (18)

(the homogeneous linear second order difference equation with constant
coefficients), where k0 and k−1 ∈ R, is usually solved by using the
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characteristic roots λ1 = ac et λ2 = 1 of the characteristic polyno-
mial P (λ) = (λ2 − (1 + ac)λ + ac, and the formulas of general solution
is

kn = c1 + c2(ac)
n.

Using the initial conditions k0 and k−1, with some calculations we get

c1 =
k0 − k−1ac

1− ac

c2 =
ac(k−1 − k0)

1− ac
.

and the formulas of the general solution is (18) is

kn =
1

1− ac

[
k0

(
1− (ac)(n+1)

)
− ack−1 (1− (ac)n)

]
. (19)

□

✓ if a = 1
c

Lemma 2.2. Consider the linear difference equation

kn+1 − 2kn + kn−1 = 0, n ∈ N0, (20)

with initial conditions k−1, k0 ∈ R. Then all solutions of equation (20)
will be written under the form

kn = k0(n+ 1)− k−1n. (21)

Proof of Lemma 2.2. Thus we have the equation

kn+1 − 2kn + kn−1 = 0. (22)

(the homogeneous linear second order difference equation with constant
coefficients), where k0 and k−1 ∈ R, is usually solved by using the char-
acteristic roots λ1 = λ2 = 1 of the characteristic polynomial P (λ) =
(λ− 1)2, and the formulas of general solution is

kn = c1 + c2n.

Using the initial conditions k0 and k−1, with some calculations we get

c1 = k0

c2 = k0 − k−1.

And, the general solution of equation (22) obtained is :

kn = k0(n+ 1)− k−1n. (23)

□
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Through an analytical approach. We put

Hn =
kn

kn−1.
(24)

which reduces equation (15) to the following one

kn+1 = (ac+ 1)kn − ackn−1. (25)

So, from Lemma (2.1) and Lemma (2.2) we get

✓ if a ̸= 1
c

kn =
1

1− ac

[
k0
(
1− (ac)n+1

)
− ack−1 (1− (ac)n)

]
. (26)

✓ if a = 1
c

kn = k0(n+ 1)− k−1n. (27)

By substituting the formulas obtained in (24),(26) and (27) into the equation
(15) the general solution becomes:

✓ if a ̸= 1
c

Hn =
ac(1− (ac)n)−H0(1− (ac)n+1)

ac(1− (ac)n−1)−H0(1− (ac)n)
.

✓ if a = 1
c

Hn =
n−H0(n+ 1)

(n− 1)−H0n
.

From all above mentioned we see that the following theorem holds .

Theorem 2.3. Let {Wn}n≥0 be a solution of (13). Then, for n = 2, 3, . . . ,

if a ̸= 1
c Wn =

W0

(ac)n + (ad+ b)W0

n−1∑
r=0

(ac)r

.

if a = 1
c Wn =

W0

1 + (ad+ b)W0n
.

With the initial condition w0 ∈ R−G1, with G1 is the Forbidden Set of system
(13) given by

G1 =

∞⋃
n=−1

{
W0 : (ac)n + (ad+ b)W0

n−1∑
r=0

(ac)r = 0 or 1− (ad+ b)W0n = 0

}
.

From Theorem (2.3), the solution of equation (12) is given by these formulas

if a ̸= 1
c u

(j)
n =

u
(j)
0

(ac)n + (ad+ b)u
(j)
0

n−1∑
r=0

(ac)r

.

if a = 1
c u

(j)
n =

u
(j)
0

1 + (ad+ b)u
(j)
0 n

.

n ∈ N0, j = {0, 1}. (28)
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From theorem(2.3) , and formula (11) It is easy to obtain the following corollary.

Corollary 2.4. Let {un}n≥0 be a solution of (11). Then

if a ̸= 1
c u2n+j =

uj

(ac)n + b(a+ 1)uj

n−1∑
r=0

(ac)r

.

if a = 1
c u2n+j =

uj

1 + (ad+ b)ujn
.

n ∈ N0, j = {0, 1}.

where j ∈ {0, 1} and xj ∈ R−Gi, with Gj is the Forbidden set of equation (12)
given by

Gj =

∞⋃
n=0

{
(x0, x−1) : (ac)

n + (ad+ b)uj

n−1∑
r=0

(ac)r = 0, or 1 + (ad+ b)ujn = 0

}
.

Corollary 2.5. Let {un}n≥0 be a solution of (9). Then

if a ̸= 1
c

u2n =
u0

(ac)n + (ad+ b)u0

n−1∑
r=0

(ac)r

,

u2n+1 =
v0

an+1cn + v0

(
ad

n−1∑
r=0

(ac)r + b

n∑
r=0

(ac)r

) ,

v2n =
v0

(ac)n + (bc+ d)v0

n−1∑
r=0

(ac)r

,

v2n+1 =
u0

ancn+1 + u0

(
bc

n−1∑
r=0

(ac)r + d

n∑
r=0

(ac)r

) .

if a = 1
c

u2n =
u0

1 + (ad+ b)nu0
,

u2n+1 =
v0

a+ ((ad+ b)n+ b)v0
,

v2n =
v0

1 + (bc+ d)nv0
,

v2n+1 =
u0

c+ ((bc+ d)n+ d)u0
.

where n ∈ N0, u0 and v0 ∈ R − G2, with G2 is the Forbidden set of equation
(12).

Proof of Corollary 2.5. Let {un, vn}n≥−1 be a solution of system (11), so {un}n≥−1

is a solution of equation (12). Then,
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✓ if a ̸= 1
c

Let

u2n+1 =
u1

(ac)n + (ad+ b)u1

n−1∑
r=0

(ac)r

,

And u1 = v0
a+bv0

, so

u2n+1 =
u1

(ac)n + (ad+ b)u1

n−1∑
r=0

(ac)r

=
v0

(ac)n(a+ bv0) + (ad+ b)v0

n−1∑
r=0

(ac)r

=
v0

an+1cn +

[
b(ac)n + (ad+ b)

n−1∑
r=0

(ac)r

]
v0

=
v0

an+1cn +

[
ad

n−1∑
r=0

(ac)r + b

n∑
r=0

(ac)r

]
v0

.

✓ if a = 1
c

Let

u2n+1 =
u1

1 + (ad+ b)nu1
,

et u1 = v0
a+bv0

, so

u2n+1 =
u1

1 + (ad+ b)nu1
=

u1

a+ bv0 + (ad+ b)nv0

=
v0

a+ ((ad+ b)n+ b)v0
.

In the same way, and using these formulas

v2n =
u2n−1

a+ bu2n−1
and v2n+1 =

u2n

a+ bu2n

we obtain

if a ̸= 1
c v2n =

v0

(ac)n + (bc+ d)v0

n−1∑
r=0

(ac)r

,

v2n+1 =
u0

ancn+1 + u0

(
bc

n−1∑
r=0

(ac)r + d

n∑
r=0

(ac)r

) .

if a = 1
c v2n =

v0
1 + (bc+ d)nv0

,

v2n+1 =
u0

c+ ((bc+ d)n+ d)u0
.

□
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2.2. Solutions of un+1 = vn−3

a+bvn−3
, vn+1 = un−3

c+dun−3
. In this section, we

discuss the solution of the system (7) by using an appropriate transformation
reducing this system to the system of first-order difference equations (9).

Analysis of the form of system. The initial values with the smallest indexes
are u−3 and v−3. By using (7) with n = 0, we obtain the values of u1 and v1 as
follows

u1 =
v−3

a+ bv−3
, v1 =

u−3

c+ du−3
.

Having the u1 and v1 values, by using (7) with n = 2 we get the values of u3

and v3 values

u3 =
v−1

a+ bv−1
, v3 =

u−1

c+ du−1
.

With u3 and v3 values, and by using the formula (7) with n = 4, , we can obtain
u5 and v5 values

u5 =
v1

a+ bv1
, v5 =

u1

c+ du1
.

...
...

u4m+1 =
v4m−1

a+ bv4m−1
, v4m+1 =

u4m−1

c+ du4m−1
.

In the same way, it is shown that the initial values u−i and v−i, for fixed i,
with i ∈ {0, 1, 2, 3}, determine all the values of the sequences (u4(m+1)−i)m and
(v4(m+1)−i)m. Also we have


u4(m+1)−i =

v4m−i

a+ bv4m−i
,

v4(m+1)−i =
u4m−i

c+ du4m−i
.

(29)

Let {
u
(i)
n = u4n−i,

v
(i)
n = v4n−i.

i ∈ {0, 1, 2, 3}. (30)

Using notation (30), we can write (7) as

u
(i)
n+1 =

v
(i)
n

a+ bv
(i)
n

, v
(i)
n+1 =

u
(i)
n

c+ du
(i)
n

.

From all above mentioned we see that the following theorem holds.

Theorem 2.6. Let {un, vn}n≥−3 be a solution of (7). Then, for n = −3,−2, . . . ,
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• if a ̸= 1
c



u8n−3 =
u−3

(ac)n + (ad + b)u−3

n−1∑
r=0

(ac)
r

,

u8n−2 =
u−2

(ac)n + (ad + b)u−2

n−1∑
r=0

(ac)
r

,

u8n−1 =
u−1

(ac)n + (ad + b)u−1

n−1∑
r=0

(ac)
r

,

u8n =
u0

(ac)n + (ad + b)u0

n−1∑
r=0

(ac)
r

,



u8n+1 =
v−3

an+1cn + v−3

ad

n−1∑
r=0

(ac)
r
+ b

n∑
r=0

(ac)
r

 ,

u8n+2 =
v−2

an+1cn + v−2

ad

n−1∑
r=0

(ac)
r
+ b

n∑
r=0

(ac)
r

 ,

u8n+3 =
v−1

an+1cn + v−1

ad

n−1∑
r=0

(ac)
r
+ b

n∑
r=0

(ac)
r

 ,

u8n+4 =
v0

an+1cn + v0

ad

n−1∑
r=0

(ac)
r
+ b

n∑
r=0

(ac)
r

 .



v8n−3 =
v−3

(ac)n + (bc + d)v−3

n−1∑
r=0

(ac)
r

,

v8n−2 =
v−2

(ac)n + (bc + d)v−2

n−1∑
r=0

(ac)
r

,

v8n−1 =
v−1

(ac)n + (bc + d)v−1

n−1∑
r=0

(ac)
r

,

v8n =
v0

(ac)n + (bc + d)v0

n−1∑
r=0

(ac)
r

,



v8n+1 =
u−3

ancn+1 + u−3

bc

n−1∑
r=0

(ac)
r
+ d

n∑
r=0

(ac)
r

 ,

v8n+2 =
u−2

ancn+1 + u−2

bc

n−1∑
r=0

(ac)
r
+ d

n∑
r=0

(ac)
r

 ,

v8n+3 =
u−1

ancn+1 + u−1

bc

n−1∑
r=0

(ac)
r
+ d

n∑
r=0

(ac)
r

 ,

v8n+4 =
u0

ancn+1 + u0

bc

n−1∑
r=0

(ac)
r
+ d

n∑
r=0

(ac)
r

 .

• if a = 1
c



u8n−3 =
u−3

1 + (ad+ b)nu−3
,

u8n−2 =
u−2

1 + (ad+ b)nu−2
,

u8n−1 =
u−1

1 + (ad+ b)nu−1
,

u8n =
u0

1 + (ad+ b)nu0
,



u8n+1 =
v−3

a+ ((ad+ b)n+ b)v−3
,

u8n+2 =
v−2

a+ ((ad+ b)n+ b)v−2
,

u8n+3 =
v−1

a+ ((ad+ b)n+ b)v−1
,

u8n+4 =
v0

a+ ((ad+ b)n+ b)v0
.
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v8n−3 =
v−3

1 + (bc+ d)nv−3
,

v8n−2 =
v−2

1 + (bc+ d)nv−2
,

v8n−1 =
v−1

1 + (bc+ d)nv−1
,

v8n =
v0

1 + (bc+ d)nv0
,



v8n+1 =
u−3

c+ ((bc+ d)n+ d)u−3
,

v8n+2 =
u−2

c+ ((bc+ d)n+ d)u−2
,

v8n+3 =
u−1

c+ ((bc+ d)n+ d)u−1
,

v8n+4 =
u0

c+ ((bc+ d)n+ d)u0
.

where n ∈ N0, u−3, u−2, u−1, u0, v−3, v−2, v−1 and v0 ∈ R − G3, with G3 is the
Forbidden set of system (7).

2.3. Solutions of xn+1 = yn−3xn−4

yn(a+byn−3xn−4)
, yn+1 = xn−3yn−4

xn(c+dxn−3yn−4)
. Let

xn =
un

yn−1
, (31)

yn =
vn

xn−1
, (32)

Using (32) in (31), we obtain

x8n =
u8nu8n−2u8n−4u8n−6

v8n−1v8n−3v8n−5v8n−7
x8n−8. (33)

Using (31) in (32), we obtain

y8n =
v8nv8n−2v8n−4v8n−6

u8n−1u8n−3u8n−5u8n−7
y8n−8. (34)

For n ∈ N
Multiplying obtained qualities from (33) and (34) from 1 to n, respectively, it
follows that

x8n = x0

n−1∏
i=0

(
u8iu8i−2u8i−4u8i−6

v8i−1v8i−3v8i−5v8i−7

)
, (35)

y8n = y0

n−1∏
i=0

(
v8iv8i−2v8i−4v8i−6

u8i−1u8i−3u8i−5u8i−7

)
. (36)

By employing the (35) and (36) in (31) and (32), we obtain

x8n−1 =
v8n
y8n

=
v8n
y0

n−1∏
i=0

(
u8i−1u8i−3u8i−5u8i−7

v8iv8i−2v8i−4v8i−6

)
,

hence, we have

x8n−1 =
v8n
y0

n−1∏
i=0

(
u8i−1u8i−3u8i−5u8i−7

v8iv8i−2v8i−4v8i−6

)
. (37)
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y8n−1 =
u8n

x8n
=

u8n

x0

n−1∏
i=0

(
v8i−1v8i−3v8i−5v8i−7

u8iu8i−2u8i−4u8i−6

)
,

hence, we have

y8n−1 =
u8n

x0

n−1∏
i=0

(
v8i−1v8i−3v8i−5v8i−7

u8iu8i−2u8i−4u8i−6

)
. (38)

Using the equalities (37) and (38) in (31) and (32), we obtain

x8n−2 =
v8n−1

y8n−1
= x0

v8n−1

u8n

n−1∏
i=0

(
u8iu8i−2u8i−4u8i−6

v8i−1v8i−3v8i−5v8i−7

)
,

hence, we have

x8n−2 = x0
v8n−1

u8n

n−1∏
i=0

(
u8iu8i−2u8i−4u8i−6

v8i−1v8i−3v8i−5v8i−7

)
. (39)

And

y8n−2 =
u8n−1

x8n−1
= y0

u8n−1

v8n

n−1∏
i=0

(
v8iv8i−2v8i−4v8i−6

u8i−1u8i−3u8i−5u8i−7

)
,

so,we have

y8n−2 = y0
u8n−1

v8n

n−1∏
i=0

(
v8iv8i−2v8i−4v8i−6

u8i−1u8i−3u8i−5u8i−7

)
. (40)

By employing the (39) and (40) in (31) and (32), we obtain

x8n−3 =
v8n−2

y8n−2
=

v8n−2v8n
y0u8n−1

n−1∏
i=0

(
u8i−1u8i−3u8i−5u8i−7

v8iv8i−2v8i−4v8i−6

)
,

hence, we have

x8n−3 =
v8n−2v8n
y0u8n−1

n−1∏
i=0

(
u8i−1u8i−3u8i−5u8i−7

v8iv8i−2v8i−4v8i−6

)
. (41)

And

y8n−3 =
u8n−2

x8n−2
=

u8n−2u8n

v8n−1x0

n−1∏
i=0

(
v8i−1v8i−3v8i−5v8i−7

u8iu8i−2u8i−4u8i−6

)
,

so,we have

y8n−3 =
u8n−2u8n

v8n−1x0

n−1∏
i=0

(
v8i−1v8i−3v8i−5v8i−7

u8iu8i−2u8i−4u8i−6

)
. (42)

Using the equalities (41) and (42) in (31) and (32), we obtain

x8n−4 =
v8n−3

y8n−3
= x0

v8n−1v8n−3

u8n−2u8n

n−1∏
i=0

(
u8iu8i−2u8i−4u8i−6

v8i−1v8i−3v8i−5v8i−7

)
,
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hence, we have

x8n−4 = x0
v8n−3v8n−1

u8n−2u8n

n−1∏
i=0

(
u8iu8i−2u8i−4u8i−6

v8i−1v8i−3v8i−5v8i−7

)
. (43)

And

y8n−4 =
u8n−3

x8n−3
= y0

u8n−3u8n−1

v8n−2v8n

n−1∏
i=0

(
v8iv8i−2v8i−4v8i−6

u8i−1u8i−3u8i−5u8i−7

)
,

so,we have

y8n−4 = y0
u8n−3u8n−1

v8n−2v8n

n−1∏
i=0

(
v8iv8i−2v8i−4v8i−6

u8i−1u8i−3u8i−5u8i−7

)
. (44)

Using the equalities (35) and (36) in (31) and (32), we obtain

x8n+1 =
u8n+1

y8n
=

u8n+1

y0

n−1∏
i=0

(
u8i−1u8i−3u8i−5u8i−7

v8iv8i−2v8i−4v8i−6

)
,

hence, we have

x8n+1 =
u8n+1

y0

n−1∏
i=0

(
u8i−1u8i−3u8i−5u8i−7

v8iv8i−2v8i−4v8i−6

)
. (45)

And

y8n+1 =
v8n+1

x8n
=

v8n+1

x0

n−1∏
i=0

(
v8i−1v8i−3v8i−5v8i−7

u8iu8i−2u8i−4u8i−6

)
,

so,we have

y8n+1 =
v8n+1

x0

n−1∏
i=0

(
v8i−1v8i−3v8i−5v8i−7

u8iu8i−2u8i−4u8i−6

)
. (46)

Using the equalities (45) and (46) in (31) and (32), we obtain

x8n+2 =
u8n+2

y8n+1
= x0

u8n+2

v8n+1

n−1∏
i=0

(
u8iu8i−2u8i−4u8i−6

v8i−1v8i−3v8i−5v8i−7

)
,

hence, we have

x8n+2 = x0
u8n+2

v8n+1

n−1∏
i=0

(
u8iu8i−2u8i−4u8i−6

v8i−1v8i−3v8i−5v8i−7

)
. (47)

And

y8n+2 =
v8n+2

x8n+1
= y0

v8n+2

u8n+1

n−1∏
i=0

(
v8iv8i−2v8i−4v8i−6

u8i−1u8i−3u8i−5u8i−7

)
,
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so,we have

y8n+2 = y0
v8n+2

u8n+1

n−1∏
i=0

(
v8iv8i−2v8i−4v8i−6

u8i−1u8i−3u8i−5u8i−7

)
. (48)

Using the equalities (47) and (48) in (31) and (32), we obtain

x8n+3 =
u8n+3

y8n+2
=

u8n+3u8n+1

y0v8n+2

n−1∏
i=0

(
u8i−1u8i−3u8i−5u8i−7

v8iv8i−2v8i−4v8i−6

)
,

hence, we have

x8n+3 =
u8n+3u8n+1

y0v8n+2

n−1∏
i=0

(
u8i−1u8i−3u8i−5u8i−7

v8iv8i−2v8i−4v8i−6

)
. (49)

And

y8n+3 =
v8n+3

x8n+2
=

v8n+3v8n+1

x0u8n+2

n−1∏
i=0

(
v8i−1v8i−3v8i−5v8i−7

u8iu8i−2u8i−4u8i−6

)
,

so,we have

y8n+3 =
v8n+3v8n+1

x0u8n+2

n−1∏
i=0

(
v8i−1v8i−3v8i−5v8i−7

u8iu8i−2u8i−4u8i−6

)
. (50)

Using relationships the theorem (2.6) we conclude the following :

• if a ̸= 1
c 

u8n−3 =
u−3

(ac)n + (ad+ b)u−3

n−1∑
r=0

(ac)r

,

u8n−2 =
u−2

(ac)n + (ad+ b)u−2

n−1∑
r=0

(ac)r

,

u8n−1 =
u−1

(ac)n + (ad+ b)u−1

n−1∑
r=0

(ac)r

,

u8n =
u0

(ac)n + (ad+ b)u0

n−1∑
r=0

(ac)r

,



422 M. Berkal, K. Berehal and N. Rezaiki

u8n−7 =
v−3

ancn−1 + v−3

(
ad

n−2∑
r=0

(ac)r + b

n−1∑
r=0

(ac)r

) ,

u8n−6 =
v−2

ancn−1 + v−2

(
ad

n−2∑
r=0

(ac)r + b

n−1∑
r=0

(ac)r

) ,

u8n−5 =
v−1

ancn−1 + v−1

(
ad

n−2∑
r=0

(ac)r + b

n−1∑
r=0

(ac)r

) ,

u8n−4 =
v0

ancn−1 + v0

(
ad

n−2∑
r=0

(ac)r + b

n−1∑
r=0

(ac)r

) .


v8n−3 =
v−3

(ac)n + (bc+ d)v−3

n−1∑
r=0

(ac)r
,

v8n−2 =
v−2

(ac)n + (bc+ d)v−2

n−1∑
r=0

(ac)r
,

v8n−1 =
v−1

(ac)n + (bc+ d)v−1

n−1∑
r=0

(ac)r
,

v8n =
v0

(ac)n + (bc+ d)v0

n−1∑
r=0

(ac)r
,



v8n−7 =
u−3

an−1cn + u−3

(
bc

n−2∑
r=0

(ac)r + d

n−1∑
r=0

(ac)r
) ,

v8n−6 =
u−2

an−1cn + u−2

(
bc

n−2∑
r=0

(ac)r + d

n−1∑
r=0

(ac)r
) ,

v8n−5 =
u−1

an−1cn + u−1

(
bc

n−2∑
r=0

(ac)r + d

n−1∑
r=0

(ac)r
) ,

v8n−4 =
u0

an−1cn + u0

(
bc

n−2∑
r=0

(ac)r + d

n−1∑
r=0

(ac)r
) .
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• if a = 1
c

u8n−3 =
u−3

1 + (ad+ b)nu−3
,

u8n−2 =
u−2

1 + (ad+ b)nu−2
,

u8n−1 =
u−1

1 + (ad+ b)nu−1
,

u8n =
u0

1 + (ad+ b)nu0
,



u8n−7 =
v−3

a+ ((ad+ b)n− ad)v−3
,

u8n−6 =
v−2

a+ ((ad+ b)n− ad)v−2
,

u8n−5 =
v−1

a+ ((ad+ b)n− ad)v−1
,

u8n−4 =
v0

a+ ((ad+ b)n− ad)v0
.



v8n−3 =
v−3

1 + (bc+ d)nv−3
,

v8n−2 =
v−2

1 + (bc+ d)nv−2
,

v8n−1 =
v−1

1 + (bc+ d)nv−1
,

v8n =
v0

1 + (bc+ d)nv0
,



v8n−7 =
u−3

c+ ((bc+ d)n− bc)u−3
,

v8n−6 =
u−2

c+ ((bc+ d)n− bc)u−2
,

v8n−5 =
u−1

c+ ((bc+ d)n− bc)u−1
,

v8n−4 =
u0

c+ ((bc+ d)n− bc)u0
.

From all above mentioned and

u−1 = x−1y−2, u0 = x0y−1, v−1 = y−1x−2, v0 = y0x−1. (51)

u−2 = x−2y−3, u−3 = x−3y−4, v−2 = y−2x−3, v−3 = y−3x−4. (52)

we see that the following result holds.

Theorem 2.7. Let {xn, yn}n≥−1 be a solution of (6). Then, for n = 0, 1, 2, 3, . . . ,

• if a ̸= 1
c (a ∈ R− { 1

c})
x8n−4

=
xn0 y

n
0

xn−1
−4 yn−4

(
(ac)n + x−2y−3(ad+ b)

n−1∑
r=0

(ac)r

)(
(ac)n + x0y−1(ad+ b)

n−1∑
r=0

(ac)r

)
(
(ac)n + y−3x−4(bc+ d)

n−1∑
r=0

(ac)r

)(
(ac)n + y−1x−2(bc+ d)

n−1∑
r=0

(ac)r

) n−1∏
i=0

ϕi.

x8n−3

=
x−3xn−4y

n
−4

xn0 y
n
0

(
(ac)n + x−1y−2(ad+ b)

n−1∑
r=0

(ac)r

)
(
(ac)n + y−2x−3(bc+ d)

n−1∑
r=0

(ac)r

)(
(ac)n + y0x−1(bc+ d)

n−1∑
r=0

(ac)r

) n−1∏
i=0

ψi.
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x8n−2 =
x−2xn0 y

n
0

xn−4y
n
−4

(
(ac)n + x0y−1(ad+ b)

n−1∑
r=0

(ac)r

)
(
(ac)n + y−1x−2(bc+ d)

n−1∑
r=0

(ac)r

) n−1∏
i=0

ϕi.

x8n−1 =
xn−4y

n
−4

xn0 y
n
0

x−1(
(ac)n + y0x−1(bc+ d)

n−1∑
r=0

(ac)r

) n−1∏
i=0

ψi.

x8n =
xn+1
0 yn0
xn−4y

n
−4

n−1∏
i=0

ϕi.

x8n+1 =
xn+1
−4 yn−4

xn0 y
n+1
0

y−3

an+1cn + y−3x−4

(
ad

n−1∑
r=0

(ac)r + b

n∑
r=0

(ac)r

) n−1∏
i=0

ψi.

x8n+2 =
y−2x

n+1
0 yn0

xn−4y
n+1
−4

(
ancn+1 + x−3y−4

(
bc

n−1∑
r=0

(ac)r + d

n∑
r=0

(ac)r

))
(
an+1cn + y−2x−3

(
ad

n−1∑
r=0

(ac)r + b

n∑
r=0

(ac)r

)) n−1∏
i=0

ϕi.

x8n+3

=

(
y−1x

n+1
−4 yn−4

xn0 y
n+1
0

)(
ancn+1 + x−2y−3

(
bc

n−1∑
r=0

(ac)r + d

n∑
r=0

(ac)r

))
(
an+1cn + y−1x−2

(
ad

n−1∑
r=0

(ac)r + b

n∑
r=0

(ac)r

))

×
∏n−1

i=0 ψi(
an+1cn + y−3x−4

(
ad

n−1∑
r=0

(ac)r + b

n∑
r=0

(ac)r

)) .
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Where
ϕi

=

(
(ac)i + y−1x−2(bc+ d)

i−1∑
r=0

(ac)r

)(
(ac)i + y−3x−4(bc+ d)

i−1∑
r=0

(ac)r

)
(
(ac)n + x0y−1(ad+ b)

i−1∑
r=0

(ac)r

)(
(ac)i + x−2y−3(ad+ b)

i−1∑
r=0

(ac)r

) ×

(
ai−1cn + x−1y−2

(
bc

i−2∑
r=0

(ac)r + d

i−1∑
r=0

(ac)r

))
(
aici−1 + y0x−1

(
ad

i−2∑
r=0

(ac)r + b

i−1∑
r=0

(ac)r

)) ×

(
ai−1ci + x−3y−4

(
bc

i−2∑
r=0

(ac)r + d

i−1∑
r=0

(ac)r

))
(
aici−1 + y−2x−3

(
ad

i−2∑
r=0

(ac)r + b

i−1∑
r=0

(ac)r

)) ,

ψi =

(
(ac)i + y0x−1(bc+ d)

i−1∑
r=0

(ac)r

)(
(ac)i + y−2x−3(bc+ d)

i−1∑
r=0

(ac)r

)
(
(ac)i + x−1y−2(ad+ b)

i−1∑
r=0

(ac)r

)(
(ac)i + x−3y−4(ad+ b)

i−1∑
r=0

(ac)r

)×

(
ai−1cn + x0y−1

(
bc

i−2∑
r=0

(ac)r + d

i−1∑
r=0

(ac)r

))
(
aici−1 + y−1x−2

(
ad

i−2∑
r=0

(ac)r + b

i−1∑
r=0

(ac)r

))

×

(
ai−1ci + x−2y−3

(
bc

i−2∑
r=0

(ac)r + d

i−1∑
r=0

(ac)r

))
(
aici−1 + y−3x−4

(
ad

i−2∑
r=0

(ac)r + b

i−1∑
r=0

(ac)r

)) .
Or

y8n−4 =
xn0 y

n
0

xn−4y
n−1
−4

(
(ac)n + y−2x−3(bc+ d)

n−1∑
r=0

(ac)r

)(
(ac)n + y0x−1(bc+ d)

n−1∑
r=0

(ac)r

)
(
(ac)n + x−3y−4(ad+ b)

n−1∑
r=0

(ac)r

)(
(ac)n + (ad+ b)x−1y−2

n−1∑
r=0

(ac)r

) n−1∏
i=0

χi.

y8n−3 =
y−3xn−4y

n
−4

xn0 y
n
0

(
(ac)n + y−1x−2(bc+ d)

n−1∑
r=0

(ac)r

)
(
(ac)n + x−2y−3(ad+ b)

n−1∑
r=0

(ac)r

)(
(ac)n + x0y−1(ad+ b)

n−1∑
r=0

(ac)r

) n−1∏
i=0

ξi.
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y8n−2 =
y−2xn0 y

n
0

xn−4y
n
−4

(
(ac)n + y0x−1(bc+ d)

n−1∑
r=0

(ac)r

)
(
(ac)n + x−1y−2(ad+ b)

n−1∑
r=0

(ac)r

) n−1∏
i=0

χi.

y8n−1 =
xn−4y

n
−4

xn0 y
n
0

y−1(
(ac)n + x0y−1(ad+ b)

n−1∑
r=0

(ac)r

) n−1∏
i=0

ξi.

y8n =
xn0 y

n+1
0

xn−4y
n
−4

n−1∏
i=0

χi.

y8n+1 =
xn−4y

n+1
−4

xn+1
0 yn0

x−3(
ancn+1 + x−3y−4

(
bc

n−1∑
r=0

(ac)r + d

n∑
r=0

(ac)r

)) n−1∏
i=0

ξi.

y8n+2 =
x−2xn0 y

n+1
0

xn+1
−4 yn−4

(
an+1cn + y−3x−4

(
ad

n−1∑
r=0

(ac)r + b
n∑

r=0

(ac)r

))
(
ancn+1 + x−2y−3

(
bc

n−1∑
r=0

(ac)r + d
n∑

r=0

(ac)r

)) n−1∏
i=0

χi.

y8n+3 =

(
x−1xn−4y

n+1
−4

xn+1
0 yn0

)(
an+1cn + y−2x−3

(
ad

n−1∑
r=0

(ac)r + b

n∑
r=0

(ac)r

))
(
ancn+1 + x−1y−2

(
bc

n−1∑
r=0

(ac)r + d

n∑
r=0

(ac)r

))

×
∏n−1

i=0 ξi(
ancn+1 + x−3y−4

(
bc

n−1∑
r=0

(ac)r + d

n∑
r=0

(ac)r

)) .

Where

χi =

(ac)i + x−1y−2(ad + b)

i−1∑
r=0

(ac)
r

(ac)i + x−3y−4(ad + b)

i−1∑
r=0

(ac)
r


(ac)i + y0x−1(bc + d)

i−1∑
r=0

(ac)
r

(ac)i + y−2x−3(bc + d)

i−1∑
r=0

(ac)
r

 ×

aici−1 + y−1x−2

ad

i−2∑
r=0

(ac)
r
+ b

i−1∑
r=0

(ac)
r


ai−1ci + x0y−1

bc

i−2∑
r=0

(ac)
r
+ d

i−1∑
r=0

(ac)
r

 ×

aici−1 + y−3x−4

ad

i−2∑
r=0

(ac)
r
+ b

i−1∑
r=0

(ac)
r


ai−1ci + x−2y−3

bc

i−2∑
r=0

(ac)
r
+ d

i−1∑
r=0

(ac)
r

 ,
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ξi =

(ac)i + x0y−1(ad + b)

i−1∑
r=0

(ac)
r

(ac)i + x−2y−3(ad + b)

i−1∑
r=0

(ac)
r


(ac)i + y−1x−2(bc + d)

i−1∑
r=0

(ac)
r

(ac)i + y−3x−4(bc + d)

i−1∑
r=0

(ac)
r

×

aici−1 + y0x−1

ad

i−2∑
r=0

(ac)
r
+ b

i−1∑
r=0

(ac)
r


ai−1ci + x−1y−2

bc

i−2∑
r=0

(ac)
r
+ d

i−1∑
r=0

(ac)
r

×

aici−1 + y−2x−3

ad

i−2∑
r=0

(ac)
r
+ b

i−1∑
r=0

(ac)
r


ai−1ci + x−3y−4

bc

i−2∑
r=0

(ac)
r
+ d

i−1∑
r=0

(ac)
r

 .

• if a = 1
c
.

x8n−4 =
xn0 y

n
0

xn−1
−4 yn−4

(1 + x−2y−3(ad+ b)n) (1 + x0y−1(ad+ b)n)

(1 + y−3x−4(bc+ d)n) (1 + y−1x−2(bc+ d)n)

n−1∏
i=0

ϕi.

x8n−3 =
x−3xn−4y

n
−4

xn0 y
n
0

(1 + x−1y−2(ad+ b)n)

(1 + y−2x−3(bc+ d)n) (1 + (bc+ d)nv0)

n−1∏
i=0

ψi.

x8n−2 =
x−2xn0 y

n
0

xn−4y
n
−4

(1 + x0y−1(ad+ b)n)

(1 + y−1x−2(bc+ d)n)

n−1∏
i=0

ϕi.

x8n−1 =
xn−4y

n
−4

xn0 y
n
0

x−1

(1 + y0x−1(bc+ d)n)

n−1∏
i=0

ψi.

x8n =
xn+1
0 yn0
xn−4y

n
−4

n−1∏
i=0

ϕi.

x8n+1 =
xn+1
−4 yn−4

xn0 y
n+1
0

y−3

(a+ y−3x−4((ad+ b)n+ b))

n−1∏
i=0

ψi.

x8n+2 =
y−2x

n+1
0 yn0

xn−4y
n+1
−4

(c+ x−3y−4((bc+ d)n+ d))

(a+ y−2x−3((ad+ b)n+ b))

n−1∏
i=0

ϕi.

x8n+3 =
y−1x

n+1
−4 yn−4

xn0 y
n+1
0

(c+ x−2y−3((bc+ d)n+ d))

(a+ y−1x−2((ad+ b)n+ b)) (a+ y−3x−4((ad+ b)n+ b))

n−1∏
i=0

ψi.

Where

ϕi =
(1 + y−1x−2(bc+ d)i) (1 + y−3x−4(bc+ d)i)

(1 + x0y−1(ad+ b)i) (1 + x−2y−3(ad+ b)i)
×

(c+ x−1y−2((bc+ d)i− bc)) (c+ x−3y−4((bc+ d)i− bc))

(a+ y0x−1((ad+ b)i− ad)) (a+ y−2x−3((ad+ b)i− ad))
.



428 M. Berkal, K. Berehal and N. Rezaiki

ψi =
(1 + y0x−1(bc+ d)i) (1 + y−2x−3(bc+ d)i)

(1 + x−1y−2(ad+ b)i) (1 + x−3y−4(ad+ b)i)
×

(c+ x0y−1((bc+ d)i− bc)) (c+ x−2y−3((bc+ d)i− bc))

(a+ y−1x−2((ad+ b)i− ad)) (a+ y−3x−4((ad+ b)i− ad))
.

Or

y8n−4 =
xn0 y

n
0

xn−4y
n−1
−4

(1 + y−2x−3(bc+ d)n) (1 + y0x−1(bc+ d)n)

(1 + x−3y−4(ad+ b)n) (1 + x−1y−2(ad+ b)n)

n−1∏
i=0

χi.

y8n−3 =
y−3xn−4y

n
−4

xn0 y
n
0

(1 + y−1x−2(bc+ d)n)

(1 + x−2y−3(ad+ b)n) (1 + x0y−1(ad+ b)n)

n−1∏
i=0

ξi.

y8n−2 =
y−2xn0 y

n
0

xn−4y
n
−4

(1 + y0x−1(bc+ d)n)

(1 + x−1y−2(ad+ b)n)

n−1∏
i=0

χi.

y8n−1 =
xn−4y

n
−4

xn0 y
n
0

y−1

(1 + x0y−1(ad+ b)n)

n−1∏
i=0

ξi.

y8n =
xn0 y

n+1
0

xn−4y
n
−4

n−1∏
i=0

χi.

y8n+1 =
xn−4y

n+1
−4

xn+1
0 yn0

x−3

(c+ x−3y−4((bc+ d)n+ d))

n−1∏
i=0

ξi.

y8n+2 =
x−2xn0 y

n+1
0

xn+1
−4 yn−4

(a+ y−3x−4((ad+ b)n+ b))

(c+ x−2y−3((bc+ d)n+ d))

n−1∏
i=0

χi.

y8n+3 =
x−1xn−4y

n+1
−4

xn+1
0 yn0

(a+ y−2x−3((ad+ b)n+ b))

(c+ x−1y−2((bc+ d)n+ d)) (c+ x−3y−4((bc+ d)n+ d))

n−1∏
i=0

ξi.

Where

χi =
(1 + x−1y−2(ad+ b)i) (1 + x−3y−4(ad+ b)i)

(1 + y0x−1(bc+ d)i) (1 + y−2x−3(bc+ d)i)
×

(a+ y−1x−2((ad+ b)i− ad)) (a+ y−3x−4((ad+ b)i− ad))

(c+ x0y−1((bc+ d)i− bc)) (c+ x−2y−3((bc+ d)i− bc))
.

ξi =
(1 + x0y−1(ad+ b)i) (1 + x−2y−3(ad+ b)i)

(1 + y−1x−2(bc+ d)i) (1 + y−3x−4(bc+ d)i)
×

(a+ y0x−1((ad+ b)i− ad)) (a+ y−2x−3((ad+ b)i− ad))

(c+ x−1y−2((bc+ d)i− bc)) (c+ x−3y−4((bc+ d)i− bc))
.



Representation of Solutions of A System of Five-Order Nonlinear Difference Equations 429

3. Conclusion

In this study, we mainly obtained solutions to the rational difference equations
system.

xn+1 =
yn−3xn−4

yn(a+ byn−3xn−4)
, yn+1 =

xn−3yn−4

xn(c+ dxn−3yn−4)
, n = 0, 1, · · · ,

where parameters a, b, c and d are executed separately and initial conditions
x−4, x−3, x−2, x−1, x0, y−4, y−3, y−2, y−1 and y0 are non zero real numbers.

4. Future works

The results in this paper can be extended to the following system of difference
equations

xn+1 =
yn−kxn−(k+1)

yn(a+ byn−kxn−(k+1))
, yn+1 =

xn−kyn−(k+1)

xn(c+ dxn−kyn−(k+1))
, n = 0, 1, · · · ,

where k ∈ N the initial conditions x−j and y−j are non zero real numbers,

j = 0, (k + 1).
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11. M. Gümüş, On a competitive system of rational difference equations, Univers. J. Math.

Appl. 2 (2019), 224-228.
12. Y. Halim, M. Berkal and A. Khelifa, On a three-dimensional solvable system of difference

equations, Turk. J. Math. 44 (2020), 1263-1288.

13. Y. Halim, A. Khelifa and M. Berkal, Representation of solutions of a two-dimensional
system of difference equations, Miskolc Mathematical Notes 21 (2020), 203-218.

14. Y. Halim, Global character of systems of rational difference equations, Electron. J. Math.
Analysis Appl. 3 (2015), 204-214 .



430 M. Berkal, K. Berehal and N. Rezaiki

15. Y. Halim, A system of difference equations with solutions associated to Fibonacci numbers,

Int. J Difference Equ. 11 (2016), 65-77.
16. Y. Halim, N. Touafek, Y. Yazlik Dynamic behavior of a second-order nonlinear rational

difference equation, Turk. J. Math. 39 (2015), 1004-1018.

17. N. Haddad, J.F.T. Rabago, Dynamics of a system of k−difference equations, Electron. J.
Math. Analysis Appl. 5 (2017), 242-249 .

18. T.F. Ibrahim and N. Touafek, Max-type system of difference equations with positive twope-

riodic sequences, Math. Meth. Appl. Sci. 37 (2014), 2562-2569.
19. T.F. Ibrahim, Periodicity and global attractivity of difference equation of higher order, J.

Comput. Anal. Appl. 16 (2014), 552-564.

20. T.F. Ibrahim, Solution and Behavior of a Rational Recursive Sequence of order Four,
Australian Journal of Basic and Applied Sciences, 7 (2013), 816-830.

21. M. Kara and Y. Yazlik, Solvability of a system of nonlinear difference equations of higher
order, Turk. J. Math. 43 (2019), 1533-1565.

22. M. Kara, Y. Yazlik and D.T. Tollu, Solvability of a system of hşgher order nonlinear
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