• 제목/요약/키워드: Styrene Oxidation

검색결과 29건 처리시간 0.019초

유독성 유기용매의 촉매산화공정에서 혼합조성에 따른 간섭효과 (Inhibition Effects of Toxic Solvent Mixture in Catalytic Oxidation Process)

  • 이승범;김원일;홍인권;김형진
    • 환경위생공학
    • /
    • 제16권3호
    • /
    • pp.72-79
    • /
    • 2001
  • The selective catalytic oxidation of toxic aromatic solvents (benzene, toluene, ethylbenzene, and styrene) and their mixtures were studied on a $Pt/{\;}{\gamma}-Al_2O_3$ catalyst at temperature ranging from $160~350^{\circ}C$. The deep conversion of aromatic solvents was increased as the inlet concentration was decreased and the reaction temperature was increased. The reactivity increases in order benzene > toluene > ethylbenzene > styrene. In mixture, remarkable effects on reaction rate and selectivity have been evidence ; the strongest inhibition effect is shown by styrene and increase in a reverse order with respect to that of reactivity. The inhibition effect was increased in order styrene > ethylbenzene > toluzene > benzene. This trend is due to the competition adsorption between the two or three reactants on the oxidized catalyst. Also, the deep conversion change of benzene was a small in tertiary mixtures(including of benzene and styrene) comparing with conversion characteristics of binary mixture with styrene. This result was due to small concentration of styrene. which had very strong inhibition effect.

  • PDF

VOCs의 촉매산화 메커니즘에 의한 독성 저감효과 (Toxicity Reduction of VOCs by Catalytic Oxidation Mechanism)

  • 이재동
    • 환경위생공학
    • /
    • 제15권3호
    • /
    • pp.88-93
    • /
    • 2000
  • VOCs의 촉매산화 공정에서 다성분 VOCs 혼합물의 간섭효과와 독성저감에 고나해 연구를 수행하였다. VOCs로는 benzene, toluene, styrene을 선정하였고, 0.5% $Pt/{\gamma}-Al_2O_3$를 촉매로 사용하였다. 각 VOCs의 반응성은 치환기의 종류에 따라 결합력이 다르기 때문에 benzene > toluene > styrene의 순으로 완전산화 반응이 잘 진행되었다. VOCs의 혼합물의 경우 각 VOCs는 서로 억제제로 작용하여 오나전산화 전환율을 감소시켰는데 이는 촉매표면에 각각의 VOCs가 경쟁 흡착하기 때문으로 styrene > toluene > benzene의 순으로 간섭효과가 크게 나타나는 것을 확인할 수 있었다. 이성분계 혼합 VOCs의 경우 혼합비에 따른 완전산화 전환율은 간섭효과가 작은 VOCs의 경우 상대 VOCs의 농도가 작을수록 전환율이 크게 나타났으며, 간섭효과가 큰 VOCs의 경우에는 상대 VOCs의 농도에 관계없이 자신의 부분농도에 반비레하는 현상을 보였다. 따라서 VOCs의 독성저감 기술로 촉매산화공정을 추천할 수 있으며, 실제공정과 같은 혼합물의 경우에도 단일성분의 전환특성과 혼합물의 간섭효과로부터 공정조건을 예측할 수 있을 것으로 사료된다.

  • PDF

Mn(III)-porphyrin에 의한 Styrene 유도체의 산화반응 메카니즘 연구 (Kinetic Investigation of Styrene Derivatives Oxidation Mechanism by Mn(III)-porphyrin)

  • 나훈길
    • 한국응용과학기술학회지
    • /
    • 제19권3호
    • /
    • pp.206-212
    • /
    • 2002
  • The catalytic activities of several metalloporphyrin, wherein the porphyrins are TPP(5,lO,l5,20-Tetraphenyl-21H,23H-porphyrin) and (p-X)TPP (X =$CH_{3}O$, $CH_{3}$, F, Cl), are reported for the oxidation of styrene and it's derivatives. The electronic effects of substrates and porphyrins on the catalytic activity of metalloporphyrin containing the transition metal ion such as Mn(III) was discussed. Investigating the correlation between the Michaelis-Menten's rate parameters and the substituent constants, we are going to analyze the influences on the changes of catalytic activity or rate determining step during the processes of the formation and the dissociation of the M-oxo-olefin.

Catalytic Activities of Pd(II), Pd(I) and Pd(O)-diphosphine Complexes for Styrene Oxidation

  • 조영제;김경채;정종화;박유철;도명기
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권3호
    • /
    • pp.211-214
    • /
    • 1995
  • The catalytic activities of palladium(0,Ⅰ,Ⅱ)-diphosphine complexes were investigated in styrene oxidation using H2O2 as terminal oxidant. The rates showed a dependence on the chelate ring patterns of complexes (PdCl2L); 5-membered ring (L=dppe: 1,2-bis(diphenylphosphino)ethane) < 6-membered ring (L=dppp: 1,3-bis(diphenylphosphino)propane) < 4-membered ring (L= dppm: bis(diphenylphosphino)methane). This sequence correlates with the ligand field strength and interactions between metal and phosphine ligands. Pd(Ⅱ,Ⅰ)-diphosphine complexes which are capable of making 4-membered chelate ring showed an enhancement of catalytic activities for styrene oxidation. The catalytic activities of Pd(0,Ⅰ,Ⅱ)-diphosphine complexes are described in terms of electronic and steric factors.

Al(lll)-Porphyrin착물에 의한 올레핀 산화반응 메카니즘 연구 (Kinetic Investigation of Olefin Oxidation by Al(III)-Porphyrin Complexes)

  • 나훈길;한만소
    • 대한화학회지
    • /
    • 제50권1호
    • /
    • pp.46-52
    • /
    • 2006
  • 착물을 촉매제로 하여 용매인 CH2Cl2와 산화제 NaClO를 사용하여 올레핀 산화반응의 메카니즘 연구를 하였다. 이들 반응에서 포르피린의 치환기는 TPP(5,10,15,20-Tetraphenylporphyrin)와 (p-X)TPP(X=CH3O, CH3, F, Cl)를, 올레핀은 styrene과 (p-X)styrene (X=CH3O, CH3, Cl, Br)을 사용하였다. 일반 효소반응에서 잘 알려진 Michaelis-Menten식에 따라 Km과 Vmax 값을 구하였다. Michaelis-Menten 식의 속도 파라미터를 포르피린 치환기에 따라 측정하고, 이들 파라미터와 치환기상수 간의 상관성을 조사함으로써 올레핀 산화반응의 중간체 M-oxo-olefin의 형성 과정과 분해 과정이 촉매활성이나 속도 결정 단계의 변화에 미치는 영향을 분석 하고자 하였다.

Development of Recombinant Pseudomonas putida Containing Homologous Styrene Monooxygenase Genes for the Production of (S)-Styrene Oxide

  • Bae, Jong-Wan;Han, Ju-Hee;Park, Mi-So;Lee, Sun-Gu;Lee, Eun-Yeol;Jeong, Yong-Joo;Park, Sung-Hoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권6호
    • /
    • pp.530-537
    • /
    • 2006
  • Recently isolated, Pseudomonas putida SN1 grows on styrene as its sole carbon and energy source through successive oxidation of styrene by styrene monooxygenase (SMO), styrene oxide isomerase (SOI), and phenylacetaldehyde dehydrogenase. For the production of (S)-styrene oxide, two knockout mutants of SN1 were constructed, one lacking SOI and another lacking both SMO and SOI. These mutants were developed into whole-cell biocatalysts by transformation with a multicopy plasmid vector containing SMO genes (styAB) of the SN1. Neither of these self-cloned recombinants could grow on styrene, but both converted styrene into an enantiopure (S)-styrene oxide (e.e. > 99%). Whole-cell SMO activity was higher in the recombinant constructed from the SOI-deleted mutant (130 U/g cdw) than in the other one (35 U/g cdw). However, the SMO activity of the former was about the same as that of the SOI-deleted SN1 possessing a single copy of the styAB gene that was used as host. This indicates that the copy number of styAB genes is not rate-limiting on SMO catalysis by whole-cell SN1.

Synthesis and Catalytic Properties of Ruthenium(Ⅲ) Unsymmetrical Schiff Base Complexes

  • Yeo Hwhan-Jin;Lim Jong-Wan
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권3호
    • /
    • pp.265-268
    • /
    • 1992
  • Ruthenium(III) unsymmetrical Schiff base complexes, $[Ru(CHBPH-TP)Cl_2]$ and $K[Ru(CHBPH-HB)Cl_2]$ were synthesized, where CHBPH-TP and CHBPH-HB are 5-chloro-2-hydroxybenzophenonethiophencarba aldehydephenylenediimine and 5-chloro-2-hydroxybenzophenonehydroxybenzophe nonephenylenediimine. These Schiff bases were obtained from the reactions of 5-chloro-2-hydroxybenzophenone (CHB) and 2-thiophenecarbaldehyde (TP) or hyroxybenzophenone (HB) and 1,2-diaminobenzene. Elemental analysis, conductivity and infrared studies of the complexes suggest an octahedral geometry around ruthenium. Magnetic moments of the complexes indicate a single unpaired electron in alow spin $d^5$ configuration. The complexes are capable of catalyzing the oxidation of styrene with sodium hypochlorite in the presence of phase transfer agent. Oxidative cleavage of C=C bond is the major reaction pathway to form benzaldehyde for styrene oxidation.

스티렌 산화반응에 대한 V-KIT-6의 촉매특성 고찰 (Catalytic Performance of V-KIT-6 for the Oxidation of Styrene)

  • 김상윤;;;임동옥;김경훈;박대원
    • Korean Chemical Engineering Research
    • /
    • 제47권3호
    • /
    • pp.275-280
    • /
    • 2009
  • 바나듐이 담지된 3차원 입방구조의 V-KIT-6를 Pluronic P123 공중합체를 구조형성제로 사용하고, 부탄올을 보조 계면활성제로 사용하여 TEOS와 $NH_4VO_3$로부터 수열합성법으로 제조하였다. 제조한 V-KIT-6는 좁은 기공분포(~6.0 nm)를 가지고 넓은 비표면적(${\sim}1,000m^2/g$)을 보여주었다. V-KIT-6에서 V의 배위 특성 등은 $^{51}V$ 스핀 공명 NMR과 ESR을 이용하여 분석하였다. 제조된 V-KIT-6는 테트라부틸 하이드로 퍼옥사이드(TBHP)를 산화제로 사용한 스티렌의 직접산화반응에서 우수한 촉매활성을 나타내었다.

다공성 탄소나노섬유 지지체에 담지된 백금촉매의 메탄올 산화 특성 연구 (Methanol Electro-Oxidation Properties of Pt Electro-Catalysts Embedded by Porous Carbon Nanofiber Supports)

  • 신동요;안건형;안효진
    • 한국재료학회지
    • /
    • 제25권3호
    • /
    • pp.113-118
    • /
    • 2015
  • To improve the methanol electro-oxidation in direct methanol fuel cells(DMFCs), Pt electrocatalysts embedded on porous carbon nanofibers(CNFs) were synthesized by electrospinning followed by a reduction method. To fabricate the porous CNFs, we prepared three types of porous CNFs using three different amount of a styrene-co-acrylonitrile(SAN) polymer: 0.2 wt%, 0.5 wt%, and 1 wt%, respectively. A SAN polymer, which provides vacant spaces in porous CNFs, was decomposed and burn out during the carbonization. The structure and morphology of the samples were examined using field emission scanning electron microscopy and transmission electron microscopy and their surface area were measured using the Brunauer-Emmett-Teller(BET). The crystallinities and chemical compositions of the samples were examined using X-ray diffraction and X-ray photoelectron spectroscopy. The electrochemical properties on the methanol electro-oxidation were characterized using cyclic voltammetry and chronoamperometry. Pt electrocatalysts embedded on porous CNFs containing 0.5 wt% SAN polymer exhibited the improved methanol oxidation and electrocatalytic stability compared to Pt/conventional CNFs and commercial Pt/C(40 wt% Pt on Vulcan carbon, E-TEK).