• 제목/요약/키워드: Sturm-Liouville boundary value problems

검색결과 5건 처리시간 0.02초

A NOTE ON THE EXISTENCE OF SOLUTIONS OF HIGHER-ORDER DISCRETE NONLINEAR STURM-LIOUVILLE TYPE BOUNDARY VALUE PROBLEMS

  • Liu, Yuji
    • Journal of applied mathematics & informatics
    • /
    • 제27권1_2호
    • /
    • pp.205-215
    • /
    • 2009
  • Sufficient conditions for the existence of at least one solution of the boundary value problems for higher order nonlinear difference equations $\{{{{{\Delta^n}x(i-1)=f(i,x(i),{\Delta}x(i),{\cdots},\Delta^{n-2}x(i)),i{\in}[1,T+1],\atop%20{\Delta^m}x(0)=0,m{\in}[0,n-3],}\atop%20\Delta^{n-2}x(0)=\phi(\Delta^{n-1}(0)),}\atop%20\Delta^{n-1}x(T+1)=-\psi(\Delta^{n-2}x(T+1))}\$. are established.

  • PDF

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS FOR SECOND-ORDER STURM-LIOUVILLE AND MULTI-POINT PROBLEMS ON TIME SCALES

  • Sang, Yan-Bin;Wei, Zhongli;Dong, Wei
    • 대한수학회보
    • /
    • 제48권5호
    • /
    • pp.1047-1061
    • /
    • 2011
  • In this paper, a class of second-order boundary value problems with Sturm-Liouville boundary conditions or multi-point conditions is considered. Some existence and uniqueness theorems of positive solutions of the problem are obtained by using monotone iterative technique, the iterative sequences yielding approximate solutions are also given. The results are illustrated with an example.

SOLUTIONS OF STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS FOR HIGHER-ORDER DIFFERENTIAL EQUATIONS

  • Liu, Yuji
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.231-243
    • /
    • 2007
  • The existence of solutions of a class of two-point boundary value problems for higher order differential equations is studied. Sufficient conditions for the existence of at least one solution are established. It is of interest that the nonlinearity f in the equation depends on all lower derivatives, and the growth conditions imposed on f are allowed to be super-linear (the degrees of phases variables are allowed to be greater than 1 if it is a polynomial). The results are different from known ones since we don't apply the Green's functions of the corresponding problem and the method to obtain a priori bound of solutions are different enough from known ones. Examples that can not be solved by known results are given to illustrate our theorems.

SOLUTIONS OF STURM-LIOUVILLE TYPE MULTI-POINT BOUNDARY VALUE PROBLEMS FOR HIGHER-ORDER DIFFERENTIAL EQUATIONS

  • Liu, Yuji
    • Journal of applied mathematics & informatics
    • /
    • 제23권1_2호
    • /
    • pp.167-182
    • /
    • 2007
  • The existence of solutions of the following multi-point boundary value problem $${x^{(n)}(t)=f(t,\;x(t),\;x'(t),{\cdots}, x^{(n-2)}(t))+r(t),\;0 is studied. Sufficient conditions for the existence of at least one solution of BVP(*) are established. It is of interest that the growth conditions imposed on f are allowed to be super-linear (the degrees of phases variables are allowed to be greater than 1 if it is a polynomial). The results are different from known ones since we don't apply the Green's functions of the corresponding problem and the method to obtain a priori bounds of solutions are different enough from known ones. Examples that can not be solved by known results are given to illustrate our theorems.