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PATH INTEGRALS ASSOCIATED WITH
STURM-LIOUVILLE OPERATORS

ErRIK G. F. THOMAS

ABSTRACT. We consider path integrals, more precisely projective
systems of Fresnel distributions, associated with Sturm-Liouville
boundary value problems.

Introduction

Among the rigorous approaches to the notion of path integral there
is the notion of projective system of finite-dimensional summable distri-
butions, closely related to the notion of prodistribution as set forth in
the work of C. M. DeWitt [6]. In the case of the Schridinger operator

—(3—)2 the finite-dimensional marginal distributions, corresponding to

subdivisions ¢ : 0 = tg < §; < -+ < &, < tha1 = T, are well known,
i.e. the corresponding finite-dimensional action functionals &, are well
known. They have the property that the corresponding finite dimen-
sional distributions form a projective or compatible system.

The main object of this paper is to calculate the discrete actions S,
also in the case of general Sturm-Liouville operators on an interval [0, 7]

D=-Sp0) e +alt), 050, q) R

accompanied by appropriate boundary conditions (BC), in such a way
that one obtains a compatible system of finite dimensional distributions
C, expi5,, so that at least for cylindrical test functionals @ there can
be no doubt as to the meaning of the path integral [ e &(z)D(dx)
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analogous to the Feynman integral for the simple Schridinger operator

—(5)2-

We assume the equation Dz = 0, © € BC has the solution z = 0
only, so that there exists a Green function K;(s) = K{t,s) satisfying
the conditions

DK¢=5t, KtEBC

where &, is the unit point mass at £. It is unfortunate, but unavoidable,
that this notion of Green function is entirely different from the notion
‘Green function’ normally associated with path integrals, namely the
kernel such that the corresponding integral operator gives the sclution
of the Schrodinger equation, which to distinguish it from the present
Green function, we prefer to call the propagator (cf. [12]}.

In studying this kind of path integral we distinguish the case where
the operator D with boundary conditions (BC), is positive. In that
case one can associate with it a Gaussian measure on the space of con-
tinuous functions C'[0,T], analogous to Wiener measure, and the path
integral could in principle be obtained by analytic continuation from a
probability measure. Also interesting from the point of view of path
integrals is the case where D, (BC) is not positive. In that case we de-
scribe the projective system of swummable distributions only if the mesh
lo] = max;—1. n{t; —t;—1) of the subdivision is sufficiently small. There
is then no analogue of Wiener measure available, and we are in a way
forced to develop, which is only very partially done here, a theory of Fres-
nel path integrals independent of analytic continuation from a Gaussian
measure.

Consideration of general second order differential operators, even non
symmetric, is not new of course, going back to Feynman himself ([10]).
But we have not seen in the literature of path integrals the kind of
exact projective systems obtained in this paper. The reason for this is
doubtless that they are more of theoretical than of practical interest.

Of course the case of the harmonic oscillator is well known. In the
last section of the paper we show that our result in this case conforms
to the result of a precise calculation in L. S. Schulman’s work {12].

Part of the paper is devoted to a brief exposition of L. Schwartz's no-
tion of summable distribution. Summable distributions naturally occur
as the finite-dimensional marginal distributions for path integrals. In
particular, finite-dimensional Fresnel distributions C,e*~ are summa-
ble.
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While writing this paper my attention was drawn' to the work of
the physicists L. Chetouani, L. Dekar and T. F. Hamman, [4], [8] who
consider just such Sturm-Liouville Schrodinger operators in order to
accommodate position-dependent mass.

1. Variation and Sturm-Liouville Green functions
Consider the Sturm-Liouville Problem on [0, T :

Dzx=f
(1) x € BC

where Dz = —(pz')’ + gz and BC' are separated boundary conditions:
(2) Lo(z) = az{0) + 52’ (0) =0, Ly(z) =~2(T)+6z'(T) =0
or if p{0) = p(T), periodic boundary conditions

(27) 2(0) = 2(T), 2'(0)=2"(T).

We assume p is continuously differentiable and p(t} > 0 for all ¢ € [0, T].
We also assume for simplicity? that the boundary conditions are such
that p(T)z(T)z'(T) = p(0)z(0)z’'(0). This is the case for the Dirichlet
boundary conditions: z(0) = z(T') = 0, that occur most often in con-
nection with Feynman integral, and for the Wiener boundary conditions
z(0) = 0, z’'(T) = 0 that occur in connection with Wiener integral.

We assume that Dz = 0, z £ BC implies z = 0. Then it is well known
that there exists a unique Green function® K such that if K;(s) = K (s,?)
we have, 4, denoting the unit mass at £,

DKt - 6t
(3)
K, e BC

by Imme van den Berg, whom it is my pleasure to thank hereby.

2We have omitted boundary conditions such that p(T)z(T)z’ (T)—p(0)z(0)z' (0} =
0. ¢f. [5] p. 291.

3In the theory of path integrals the term ‘Green function’ usually denotes an
entirely different object, namely the propagator of the one-parameter unitary group
which has D as generator. To distinguish it from the Sturm-Liouville Green function
this kernel is sometimes called the propagator cf. e.g. [12]
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Let
1 1t
(4) S(z )=§(Da: x) = 2]{; pE’ -+ qztdt

Let 0 = {t1,...,t,} where 0 = g < {; < -+ <t, <t,y1 =T, and let
§=1{(&,...,&) ER

Assume for the present that ¢ > 0. Then we shall show that there
exists a continuous function x, on [0 T| such that z, € BC, z(t;) = &,
and such that on the intervals (¢;_;,¢;) we have Dz, = 0.

Then, since z, depends linearly on £, there exists a positive definite
symmetric matrix A, = (A;;), 1 £ j < n, such that

(5) 50(6) = S(zs) = 5(A,6,8) = ZAUe@@.

Let KU be the n-by-n matrix Kij = K(t“ tj).

THEOREM 1. Let ¢ > 0 and assume Dx = 0 and x € BC implies
z = (. The matrices K, and A, are well defined and inverses of each
other. In other terms: the quadratic form § — S, (&) is reciprocal to the
quadratic form defined by K.

EXAMPLE 1. In the Wiener case: Dz = —z", z(0) = 0, 2/(T) = 0,
K(t,s) = min(t, s). We have

_ G &) (& 6)? &
© =S Ty
and
(7) - (Ko'gag) = Z mln(tz,tj)fzfj

1<i,7<n

Thus, as is well known, these quadratic forms are reciprocal to each
other, i.e., the corresponding matrices are each others inverse.

EXAMPLE 2. In the Dirichlet case z(0) =0, z(T) =0,
K(t,8)=t(T—8)/T,0<t<s<T.

2 _ 9 B 2
® gg=pmo Gl 8] 4
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() Koo = S M bee

T
1€iy<n

Let Dp be the set of functions = such that =" € L?, satisfying the
boundary conditions BC (periodic or separated), equipped with the
norm ||z||+ defined by

1
(10) Il = [ 9e® +aatet
0

Let {z,y)x denote the corresponding inner product for which |jz|[+ =
\Y (Sl?,.’L')H.

LEMMA 1. Let H be the completion of Dp. Then we have the con-
tinuous injection H <, L?(0,T).

Proof. Let Hy be the domain Dp equipped with the norm in (10).
Then the inclusion Hg <, L? is continuous. Since the operator K is
strictly positive there exist constants K > 0 and ¢ > 0 such that if
z = Kz, we have, (Dz,1) = (2,K2) > k{z,2) > ¢(Kz,Kz) = c||z|!*. To
prove that the continuous extension to H of the injection Ho ., L? is
injective we have to prove the following: If (zn,)nen is Cauchy in Hy and
converges to 0 in the space L%, then (z,) goes to zero in Hy. Proof: p
being bounded below by a positive constant, (&) is Cauchy in L2(0,T)
and so converges to y € L%(0,T) in the space L?(0,T) and therefore in
the space of distributions D’'(0, 7). But since x,, goes to 0 in D'(0,T) it
follows that &, goes to zero in D’(0,T) which implies that y = (. Then
p and g being bounded, (z,} goes to zero in Hj. O

LEMMA 2. Ifz € H and y € Dp then
(11) (z,y)n = (z, Dy) 12

Proof. For z € Dp this follows from (3) and both sides of the equation
are continuous on M. g

LEMMA 3. The reproducing operator® of H as a subspace of L? is the
integral operator with kernel K. In particular, we have the continuous
inclusion

(12) Hc, C[0,T)

4We follow [13] p.151 where the reproducing operator is called ‘noyau reproduisant’
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Proof. For f € L? we have Kf € Dp and DK f = f. Thus, by the
previous lemma

(13) (vaf)'H = (w:DKf)LZ = ("T:f)LQ
O

Now by (12) we have the continuous linear map m, : H — R defined
by m.(x) = (x{t1),...,z(t,)). We consider the image Hilbert space
Hy = 7, (H) which is R equipped with a certain Hilbert structure. If
- £ € R? we have

(14) ]I+, = min||zlln = [io|ln

Telx)=

the minimum being attained by the unique element z, € H orthogonal
to the kernel N, of 7, restricted to H ([13, p. 176]). If ¢ € D(0,T)
with support in the complement of o it is obvious that Dy € N,. Thus
(Dzq,¢) = (2o, D) = 0 which means that Dz, = 0 on the complement
of o, i.e. in between the points ¢;. Thus z, is the element previously
denoted as such. It follows that

(15) 1€, = > Ay

I<ig<n

LEMMA 4. Let X = R"™ equipped with the norm defined by the pos-
itive definite matrix A as in (15). Then the reproducing operator of K
is the inverse matrix K = A~!,

Proof. Let K be the reproducing operator. Then
(16) (2, K )k =<z,£>, zeR" £eR"

the latter bracket denoting the duality between R™ and its dual R™, or
the standard inner product on R”. Now (z,y)x =< Az, y >=< z, Ay >.
Thus we have

(17} <z, AKE >=<z,£> xzeR" £€R”
proving that K = A~", d

The proof of the thecrem now follows from the fact that, by the
Schwartz calculus of Hilbert subspaces ([13] p. 176, Prop. 21), the
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reproducing operator of the image 7, (H) is 7,Kn}. Since n}(a) =
> @;d;, the corresponding matrix is just K{¢;,¢;). By Lemma 4 this
matrix equals A~'.

REMARK. The proof shows that under the assumptions of Theorem
1 the element x, is characterized by the relation
(18) S(z.) = min_S(a)

T€BC

The proof also shows that instead of assuming ¢ > 0 it is enough to
assume that the operator D is strictly positive, i.e. the integral operator
associated to the Green function is positive.

2. The harmonic oscillator

Here we have
(1) Hox=-1z"-w'z

with w € R and with Dirichlet boundary conditions.

The operator being in general not positive, the previous analysis does
not apply.

If wT does not belong to #Z the conditions H,z = 0, £(0) = z(T) =0
imply x = 0, so there exists a Green function for H, which is:

sinw(T — ) sinws

(3) K“(t, ) = 0<s<t<T

wsinwT ’

It is a meromorphic function of w with poles in the set #Z/T.
On the other hand if

(4) Sin(w(ti - ti—l)) 7£ Or 1= ]-1 sy T

then the continuous function z, which satisfies the Dirichlet boundary
conditions, the condition z{¢;) = &, i = 1,...,n, and on the intervals
{t;—1,t;) the condition H,z, = 0, is well defined. The condition (4)
is satisfied for all non-real complex w. For real w (4) is satisfied for
almost all choices of o, in particular for those partitions ¢ such that the
modulus |o| satisfies |w||o| < 7.

Under those conditions, if we put

1
(5) Su(z} = %/ &2 — wia?dt
0
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the matrix AY such that

1 T
(6) Su(zo) =35 > A€

=1

is well defined and is for fixed ¢ a holomorphic function on the set Q
of elements w such that w ¢ #Z/T and such that the conditions (4) are
satisfied. )

On the other hand the the Green function (3) is holomorphic on
Crz)T.

As a consequence we have, if K = K“(t;,1;),

THEOREM 2. Given o = {t1,...,t,} the matrices Ay, and K} are
inverses of each other for all w € .

Proof. The function w — AYKY is holomorphic on €} and equal to
the identity matrix I if w is purely imaginary. Thus, §2 being connected,
the identity AYKY = I holds throughout (2. d

3. The general case

We now consider a general symmetric Sturm-Liouville operator

——( ix)-{- z
a1

(1) Dz =
where ¢ is continuous and p is continuously differentiable on [0, T], with
p(t) > 0 and ¢(t) € R for all ¢ € [0, T).

As before we assume the boundary condition (1.2, 1.2") is such that
p(T)z(TYz' (T) = p(0)z(0)z'(0), so that we have

1
(2) {(Dz,z) = f pi® + gzidt
0

and we assume that the only solution of the homogeneous boundary
value problem is zero. This implies that the operator has a well de-
fined Green function K, which defines an invertible self-adjoint integral
operator denoted K also.
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THEOREM 3. 1. There exists § > 0 such that if |¢| < & the contin-
uous function x,, satisfying the boundary conditions, taking the values
z(t;) = &, ¢ = 1,...,n and satisfying the equation Dx = 0 in the
intervals (t;_1,%)}, i =1,...,n, is uniquely defined.

2. Ifjo| < § and A = A, is the matrix such that

(3) S(as) = Z A&l

4,j=1
and K, is the matrix (K (t;,t;)), then A, and K, are each others inverse.

Proof. Let S = {x € C'[0,T] : Dz = 0}. The space § is two-
dimensional, and so its topelogy coincides with the topology induced
by C'0,T]. We first assume we have separated boundary conditions.
Fro<a<TltN,={zecS§:z{(e) =0} Fora=00ra=1
let N, = {z € §:z € BC,} BC, being the sct of functions satisfying
the boundary conditions at a. Then, for all @ € [0,T] the space N, is
one-dimensional. |

LEMMA 1. There exists § > 0 such that for a,a’ € [0,7] and 0 <
la — a'| <4, we have N, N Ny = {0}.

Proof. If not there exist sequences a, and a!, in [0, 7] such that 0 <
la,, —al,| = 0 and N, NN, # {0}. Passing to a subsequence we may
assume a,, and a], converge to a limit a. Let z,, € Ny, NNy C §
be chosen such that ||z,|| = 1. Passing to a subsequence we may
assume it converges to ¢ € S, with |2l = 1. We may also assume
that 0 < a, < T, 0 < a/, < T (if from a certain point on a, = 0

or T the details are somewhat simpler). Then since M =

._an

i [on 2, (s)ds — 2/(a) we have z'(a) = 0 and 2(a) = 0. This is
true whether a is an endpoint or not. By the uniqueness of the Cauchy
problem this implies that x = 0 which gives a contradiction. In the case
where p(0) = p(T") with periodic boundary conditions, the proof of the

lemma, is similar, the interval being replaced by a circle. U

For 0 < a < T let L.{z) = z(a) (cf. (1.2)}). In the case of periodic
boundary conditions let L,(x) = z(a) for all a.

LEMMA 2. Let 0 < a < o’ £ T be such that N, " Ny» = {0}. Then
for any £,£' € R there exists a unique element x = x, . € S such that,

La(z) =& Lar(z) =



374 Erik G. F. Thomas

Proof. The map = — (L,(z), L. (x)) € R? being one-to-one on the
two-dimensional space S, it is a bijection. |

LEMMA 3. Let 6§ > 0 be asin Lemma 1. Let 0 = {0 =t5 < #; <

- < t, < tyy) = T} be a subdivision with |o| = max(t; — £;_1) < 4.
Let (&1,...&,) € R™. Then there exists a unique continuous function
T, satisfying the boundary conditions and such that z,{t;) = &, i =
1,...,n.

Proof. We define z,, to be the function which on the interval [¢;-1,¢;]
coincides with the solution ., , ;, of Lemma 2, taking the value &; at
ti,’t‘=l,...,n. O

This proves the first statement of the theorem.

To prove the second statement we proceed by analytic continuation.
Observe that the first statement of theorem is valid if we replace the
operator D by D = D — A where X belongs to the resolvent set g(D).
Let 2 be the corresponding function satisfying the boundary conditions
and such that z}(f;) = £. We wish to prove that it is holomorphic in
A. Actually we have:

PRrROPOSITION. Let C be a compact subset of the resolvent set g(D).
Then there exists & > 0 such that for |o| < § and A € C the function
T samsfymg the boundary conditions (BC) such that x)2(t;) = &, 1 =
1,...,n, and satisfying the equation Dyx) = 0 on the intervals (t; 1,t;),

Q
is well defined. Moreover it is holomorphic in A € C.

The proof is almost the same as previously:
We denote S* = {z: Dyz =0}, N} = {z € §*: L,(z) = 0}.

LEMMA 1°. Let C be a compact subset of p(D). Then there exists
§ > 0 such that 0 < |a — a'| <6 and X € C implies N2 N N = {0}.

Proof. If there is no such § > 0 there exist sequences an,a,, € (0,7,
An € C such that 0 < |a, — a},| — 0, such that N}~ N N;‘,: # {0}. We
can take ©, € N2 N A7 such that ||z}l = 1 and, using the fact that

the solution of the Cauchy problem z € S* is obtained as the solution
of a Volterra integral equation, depending on the holomorphically on
the parameter A, we may, passing to a subsequence if necessary, assume

5We denote o{D) the resolvent set of the self-adjoint operator 2 = K—1.
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A, — A and z, — x € §* This leads to a contradiction in the same
way as in the proof of Lemma 1. a

LEMMA 2°. Let 0 < a < a' <T be such that N} " N} = {0}. Then
for any €,€' € R there exists a unique element ¢ = x, ,» € S such that,
La(m) = ga La’(m) = g"

The proof is the same as for Lemma 2.

LEMMA 3’. Let§ > 0 be as in Lemma 1. Let o be a subdivision with
lo| < 8. Let (£1,...6n) € R™. Let A € C C o(D). Then there exists a
unique continuous function x> satisfying the boundary conditions and

such that x)(t;) = &,4=1,...,n. Moreover, the map A — z € C[0,T]
is holomorphic on the interior of C.

Proof. The proof of the first statement is similar to that of Lemma
3. For the proof of the holomorphy it is sufficient to prove that the
maps A — ) are holomorphic. Since the interval is such that

g _1.t4
the function z7 is uniquely defined, for A € C, there is a Green function
K 3‘ for this interval with the boundary conditions L;, and L,,_,, which

is obviously holomorphic in A € €. Let y; be function in C[t;—1,1]
satisfying the boundary conditions. Then Dy (z) — y;) = —Dx(y) so
(=]

that 2 = —Kg\(D A¥i) + ¥:, which is a holomorphic function of A € C.00

Now we can finish the proof of Theorem 3. Let C be a compact subset
Q

of (D) such that the interior C is connected, contains 0 and contains
some A € R with A < ming. Let § > 0 be such as in the proposition and
let ¢ be such that {o| < 6. For A € C let K. and A be the matrices
corresponding to Dy. Then if A < min ¢ the matrices K and A2 are, by
Theorem 1, inverse to each other. Since they depend holomorphically

[s]
on A € C, it follows that also for A = 0 we have A’K® = I.

REMARK. Under the assumptions of Theorem 3, and although the
operator D is bounded below, we do not in general have the minimum
property (1.18).

In fact, if o € D(0, 1) has its support disjoint from ¢, and is such that
S(p) < 0, which for a given ¢ can always be accomplished by taking
g appropriately negative, we have S(z, + ) = S(z,) + S(p) < S(zs)
while z, + ¢ satisfies the same boundary conditions and takes the same
values at the #; as z,.
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4. Gaussian integrals

In this short section we assume that the operator I with its domain
Dp defined by the boundary conditions, is > 0.

We denote M[0,T] the set of Radon measures u# on [0,7] and we
write < z,u > for the integral of the function z with respect to pu.
We denote Ky the function t —< K, pu >, so that < Kp,p >=
S Kt $)uldt)u(ds).

THEOREM 4. Let K > 0 be the Green operator associated to the

operator D > 0. Then there exists a unique probability measure Gg on
C[0,T) such that

(1) / eI THZ Qe (da) = e~ 2<FRA> e M[0,T).
clo,7)

For ¢ = {t1,...,t,} the image of Gk under the map 7, is the Gaussian
measure on R™

det A 1
2 = g _E(Aog.-s)
( ) GK, 1f (27‘()" € dE

whose covariance kernel is K,. Briefly, G equals the projective limit

(3) Gx =1limGkg,

Proof. The main thing to prove is that the centered Gaussian process,
with covariance K, has continuous paths. Since K is a Green function,
it follows from the construction [5 p. 355] that the partial derivatives
%K(t,s) and %K(t,s) exist for t # s and are bounded in absolute
value by some number M. This implies that

|K(S:S) - 2K(t)s) +K(tvt)| < |K(S,S) - K(t!s)l + |K(tvs) - K(tat)l
< 2M|t — 5|

for all ¢,s € [0,T]. The continuity of the paths then follows from the
known criteria for continuity cf. [9, Thm 4.1.1, p. 48] or [11, Ch IV Thm
5, p. 172]. The space C[0, T| being separable, this implies the existence
of the measure G with covariance kernel K. The image under the map
7. 15 the Gaussian measure whose covariance kernel is the matrix K,
such that for £ € R™ one has < K,&,& >=< Knl(£),n}(£) >, obtained
by transposing 7. d
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COROLLARY. In the case of Dirichlet boundary conditions z(0) = 0
or z(T") = 0 it follows that Gk is concentrated on the closed subspace
of functions x € C|[0,T] vanishing at 0 or at T".

Proof. 1If z(0) = 0 is one of the boundary conditions we have K(0,t) =
0 for all £ € [0,T], which implies that the Hilbert space H whose repro-
ducing kernel is K, is contained in the closed subspace Cy[0,T] = {z €
C[0,T] : z(0) = 0}. Then Gk being the image under the injection
H <, C[0, T} of the canonical normal cylinder measure on H, it follows
that G g is concentrated on Cp[0, T, the support of G i being the closure
of H. More simply, if #(z) = 2{0) the relation [ < £,z >2 Gr(dz) =<
K¢, £ >= 0 implies that G is concentrated on the set {z : {(x} = 0}.
The reasoning for the other end-point is similar. a

REMARK. From the case of Brownian motion, Dz = —z”, z(0) = 0,
z'(T) = 0, we see that there is in general no analogue to this Corollary
when the boundary conditions involve a derivative. The above argument
is not quite valid with the discontinuous linear form £(z) = a'(T)

5. Summable distributions

We recall the elements of the theory of summable distributions, adopt-
ing the standard notations of the theory of distributions [14]. For more
details see [14], [15], [16].

Let B(R™) be the space of functions ¢ of class C*° which are bounded
as well as all their derivatives D¥@ (k; times with respect to z;, i =
1,...,n). Asusual |k] = k1 +- - -+ k&, denotes the order of differentiation.
We put D% = . For ¢ € B(R") let

(1) Pmlp) = sup 1D% ¢l ]oo-

Equipped with these seminorms B(R") naturally becomes a Fréchet
space.

A distribution T € D'(R"™) is summable if there exist constants M > 0
and an integer m > 0 such that

(2) | < Ty >| < Mpuly), o€ DR

The smallest possible m will be called the summability order of T
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A distribution of sum-order 0 is just a bounded measure p € M,.
More generally it follows from the estimate (2) and by the Hahn-Banach
theorem, that a summable distribution is a finite sum of derivatives of
bounded measures:

3) T= ) D'w

|k|<m

This shows that T' may be extended to the space B(R™} by putting

(4) <T,p>= Y <y, (1) DFg >
tel<m

and that the extension has the bounded convergence property, i.e. :

If ; — ¢ in the C°° topology (convergence uniformly on compact
sets for the functions and their derivatives) and if the ¢; remain bounded
in the space B(R™) ( sup, p{¢;) < 400 for all m), then < T,¢p; >—
<T,p>.

In particular, if o € D(R") and a(x) = 1 for z in the unit ball, if
an(x) = afz/n) are the usual cutoff functions, we have, for ¢ € B(R")

(5) <T,p>=lm < T,a,p >
T

which shows that the extension of T to B does not depend on the rep-
resentation (3). We call it the canonical extension.

In particular, the total mass < T,1 > is canonically defined, which
accounts for the name summable distribution.

It can be shown that conversely, a linear map T : B(R*) — C
having the bounded convergence property, is the canonical extension of a
summable distribution, its restriction to 2. Thus , we may as well define
summable distributions as linear maps having the bounded convergence
property. With this definition the notion of summable distribution also
makes sense in Banach spaces (In the PhD thesis of E. Cator summable
distributions on locally convex spaces are studied cf. [3]).

The following theorem gives a number of characterizations of sum-
mable distributions:

THEOREM 5. [Schwartz, 14] Let T € D'(R"™) be a distribution. The
following are equivalent:
1. T is summable.
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2. For all o € D(R™) the convolution product o + T is a bounded

measure. '
3. For all & € D(R") the convolution product a =T is an L' function.
4. T =3, D*puy. is a finite sum of derivatives of bounded measures.
5. T =Y, D*fy is a finite sum of derivatives of L' functions.

A number of the usual operations on bounded measures also make
sense for summable distributions. In particular: direct products, images
under linear maps, convolution products, Fourier transforms.

For instance the image of the summable distribution T' € D} (R")
under the linear map u : R® — R” is the summable distribution u(T)
defined for ¢ € B{R*) by

(6) <u(T),p >=<T,pou>
We then have
(7 sum-order(u(T)) < sum-order(T)

We usually denote the effect of T on ¢ € B as in the case of measures
by

(8) / ()T (dx)

A summable distribution T is temperate, its Fourier transform being
the continuous function of polynomial growth T' defined directly by

9) Fy) = / ¢~ T(dz)

where zy =z + -+ + :cnyn..

PRrOPOSITIONS. Let A be a invertible symmetric n-by-n matrix and
let
S(z) = L+ < Az,z >. Then the Fresnel distribution 'S is summable

2
and its Fourier transform equals (ﬁfgn exp(-—% < Ky,y >) where

K = A~'. More generally, for every polynomial P the product Pe'd s
summable.

67T he fact that ei™®" is summable is observed in [14] p. 271.
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Proof. Since S(z) is real the function F = ¢*° is bounded, hence
temperate. The calculation of the Fourier transform, with the help of a
diagonalization of A , is elementary. The result shows that the Fourier
transform of o * E or a x PE belongs to the Schwartz space §. Hence
a * (PE) belongs to 8, and a fortiori to L'. Thus, PE is summable by
Schwartz’ theorem. O

6. Cylindrical Fresnel distributions

Beside the evaluation maps , : C[0,7] — R we have, for ¢ < ¢’
(i.e. o C ') the projection maps

(1) Moyt R — R
which are such that for 0 < &'
(2) My = Mgg Mg

Let & be the set of subdivisions o = {¢1,...,tx} of [0,77], with 0 =
o<t < - <tp<tpyp1=T.1f6>01et 55={0c€6:|o| <4}

DEFINITION A cylindrical path distribution is a family of summable
distributions (T, )ses, such that, for ¢ < o', we have the coherence
condition

(3) T,:,- = Nag! (Tgw)

This notion is very close to the notion of prodistribution developed in
[6). The main difference is that we take & or G; as index set, rather
than the set of finite-dimensional quotients. Also we assume that the
finite dimensional marginals are summable distributions. This implies,
but is not equivalent to, the property that their Fourier transform is a
continious function of polynomial growth (cf. [6], p. 61).

If the T, are Fresnel distributions we shall call (T,),es; a cylindrical
Fresnel distribution.

THEOREM 6. Under the assumptions of Theorem 3, there exists a
unique cylindrical Fresnel distribution Fy such that one has

(8) f ST P (d) = e 3<KIE> e M0, T]
clo,T]
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at least if p is a finite linear combination of point-masses.
For o = {t1,...,tn} and |o| < §, the corresponding marginal distri-
bution is the Fresnel distribution on R

(9) Fg, = C,e'%®dg

where S,(£) = 4(Ac&, &) is the stationary value of the action S(z) for
paths satisfying the boundary condition and such that m,(z) = £, and

_ [detA
00—1/(5705'

Proof. Given the preceding work it is sufficient to observe that a
family (7,), is compatible iff the Fourier transforms T, are restrictions
of each other. O

REMARK. It can be shown that the sum-orders of the distributions
Fg, with ¢ = {t1,...,t,}, are at least n/2 and so unbounded [17].7
This implies that one cannot define the Feynman integral as a summable
distribution on the Banach space E = C[0,T], i.e. as a functional on
the space B(E}, having the bounded convergence property.

Thus the problem remains to define an appropriate subspace By (E)
C B(E), containing the cylinder functions ¢ o 7, with ¢ € B(R?}, on
which cylindrical distributions such as Fg, but not only Fresnel distri-
butions, are defined. One would expect e’ <%#> to belong to this space,
so that formula (8) makes sense for all u € M[0,T]. More generally,
experience with the discrete time situation [17], leads one to expect the
space to contain superpositions, ®(z) = [ e <%#>Q(du), where (} is a
measure on M [0, T having exponential moments. This gives a link with
the work of Albeverio Hoegh-Krohn [1}.

7. Feynman’s notation

Given the fact that the cylinder distribution Fy has as marginal
distributions the functions c,e’®c where S, is a discrete version of the
action functional S(z) = 1 fOT pi? + gz?dt it seems natural to indicate
the integral (6-8) as

(1) f eiS(w)+i<,u,:r:>.D(d$) — e-%a’.K,u,p)
Pi0,T)

7F.Bijma, in her Undergraduate Thesis [2], has shown the exact summability
order to be n + 1.
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ere P[0,T] denotes, in view of the result for Gaussian measures, the

closure in C0, T] of the set of paths satisfying the boundary conditions.
In the case of the harmonic oscillator we get, on the interval [t,, 5]
instead of [0,7] and T = ¢, — t,,

(2)

(3)
wit

(4)

ty
S(z) = %/ i — wiz?dt
t

a

/ ez‘S(m)+i<p,z>'D(d$) — e—%<K,u,,u>
P[ta,tbj

h, according to (2-3)

1 sinw(ty, —t)sinw(s — t,)
S < Kpp>=
5 < Kpp> [/ —snoT p(s)u(t)dtds

to<s<t<ly -

in conformity with the calculation in {12] p. 38, (6.42), with x = e, and
where z, = 0, 2, = 0, Ptq, 3] being the set of paths beginning and
ending at 0, i.e., subject to Dirichlet boundary conditions.
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