• Title/Summary/Keyword: Strut As Permanent System

Search Result 8, Processing Time 0.018 seconds

Strut as a Permanent System using Composite Beams (층고절감형 거더를 이용한 영구 스트러트 공법)

  • Hong, Won-Kee;Park, Seon-Chee;Kim, Jin-Min;Lee, Ho-Chan
    • KIEAE Journal
    • /
    • v.8 no.1
    • /
    • pp.87-92
    • /
    • 2008
  • Sheathing work used for excavation in a crowded downtown is generally a temporary strut method using H-piles and sheathing wall includes lagging, CIP, SCW or slurry wall. A temporary strut serving the support for sheathing wall acts to resist the earth pressure, but it shall be removed when installing the underground structure members. A traditional temporary strut might cause the stress imbalance of the sheathing wall when it is demolished, resulting in time extension and the risk of collapse. A traditional temporary strut method thus needs to be improved for schedule and cost reduction, risk mitigation and for preparation for potential civic complaint. A permanent strut method doesn't require installing and demolishing the temporary structure that will lead to reducing the time and cost and the structural risk during the demolition process. And given the girder, the part of the underground structure, serves the role of strut, it can secure the wider interval compared to the traditional method, which enables to secure the wider space for the convenience of excavation as well as enhance the constructability and efficient site management. The thesis was intended to study the composite girder designed to use the strut as permanent structure so as to reduce the excavation and floor height.

A Study on the Technological Improvement of Strut as a Permanent Structure (구조물 겸용 흙막이 스트러트 공법의 개선 연구)

  • Kim, Sun-Kuk;Hong, Won-Kee
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.5
    • /
    • pp.186-193
    • /
    • 2008
  • The SPS, Strut as a Permanent System, method is widely adopted for the main structural member in addition to temporary strut function for the shuttering of excavation work. Although the SPS method has contributed to cost saving, time reduction, enhancement of structural stability, improvement of construction environment and so on at the building construction site, it caused the problems of increase of basement height and additional work for fire protection of steel structure. The increase of basement height caused the increase of shuttering depth and excavation, and the fire protection caused the additional cost as well as the deterioration of construction environment. In order to improve the problems, this paper is to propose a modularized hybrid structural system(HSD). The detail of the system is introduced and the structural performance and constructibility are proved through the experiment and site application.

A Case Study on the Application and History of Stuts System using the Underground Excavation Construction (지하굴착공사에 적용되는 버팀 시스템의 변화와 적용 사례연구)

  • Lee, Jung-Jae;Jung, Kyoung-Sik;Roh, Bae-Young;Kim, Hong-Taek
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.54-65
    • /
    • 2006
  • Since timbering of a cut in association with underground excavtion work is introduced to domestic, in spite of limitation of special quality in this method, time change, variety of construction, Strut Method is still considered with general methods. Experts have developed methods which is improved in limitation of special quality by continuous studies of normal strut method in basic, and it has been applied to construction site Consequently, this study introduced improved Strut Method to help experts when they select resonable methods with regard to construction site, conditions

  • PDF

Development of Struts for Soil Shuttering as a Permanent System (구조물 겸용 흙막이 스트러트 공법)

  • Hong Won-ki;Kim Sun-kuk;Kim Hee-Chul
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.3 s.19
    • /
    • pp.71-78
    • /
    • 2004
  • In conventional method of supporting soil shuttering wall during excavation a system of struts and wales to provide cross-lot bracing is common in trench excavations and other excavations of limited width. This method, however, becomes difficult and costly to be adopted for large excavations since heavily braced structural systems are required. Another expensive and unsafe situations are expected when temporary struts must be removed for the construction of underground structures. This paper introduces innovative strut systems which can be used as permanent underground structures after its role as brace system to resist earth pressure during excavation phase. Underground structural system suggested from architect is checked against the soil lated pressures before the analysis of stresses developed from gravity loads. In this technology, named SPS(Struts as Permanent System), retaining wall is installed first and excavation proceeds until the first level of bracing is reached. Braces used as struts during excavation will serve as permanent girders when buildings are in operation. Simultaneous construction of underground and superstructure can proceeds when excavation ends with the last level of braces being installed. In this paper, construction sequence and the calculation concept are explained in detail with some photo illustrations. SPS technology was applied to three selected buildings. One of them was completed and two others are being constructed Many sensors were installed to monitor the behavior of retaining wall, braces as column in terms of stress change and displacement. Adjacent ground movement was also obtained. These projects demonstrate that SPS technology contributes to the speed as well as the economy involved in construction.

A Case Study on the Top-Down Methods Performed in the Excavation Works of Domestic Downtown (국내 도심지 굴착공사에 적용된 Top-Down 공법의 시공사례 연구)

  • Chung, Jeeseung;Park, Sukk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.2
    • /
    • pp.5-19
    • /
    • 2017
  • Underground excavation for building construction in Korea is changing from conventional support method (Strut, Ground anchor) to inside permanent support method by stability, economic, circumstances around excavation and etc. This study was selected the sites of Top-down, New Top-down, S.P.S, S.T.D and B.R.D in general use. This study was compared and analyzed a construction cost and period between aforementioned methods and conventional support method. Also, this study was confirmed the stability of temporary retaining wall by analysis for measurement data under construction. As a result, this study can grasp that most improved permanent support method is excellent in economic and constructability than conventional support method in case of deep excavation and rapid appearance of bedrock.

Analysis of Cases Using Top-Down Construction Method Under Various Site Condition (현장 조건에 따른 Top-Down 공법 사례분석에 관한 연구)

  • Shin, Hyun-Jung;Shin, Kyoo-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.197-199
    • /
    • 2011
  • To utilize the Top-Down construction method, it is required to analyse building area, floors, and soil conditions to choose the three basic elements of retaining wall, base column, and floor structure. The purpose of this research is to compare the methods of Top-Down with other construction methods. The research method is to analyse the project conditions of Top-Down project cases. The aim is to develop a method of selecting alternatives, considering construction characteristics, work schedule, supporting methods, foundation types.

  • PDF

A study on the Applied Technology of a Case for Underground Structures Considering Downtown Site Conditions (도심지 여건을 고려한 지하구조물 공사사례의 시공기술요소에 관한 연구)

  • Lee, Il-Jae;Maeng, Eun-Ju;Son, Hyeok;Lee, Jong-I;Kim, Hyung-Wan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.189-192
    • /
    • 2012
  • Underground structure construction in the downtown is very difficult despite the development of construction technology. We have been a lot of research in order to solve the problem, it was a remarkable achievement. But there are still many difficulties. This study is to analyze the construction technology to demolish the existing underground structures and to build new building applied topdown method at the same time. This technology was effective to suppress interference between the exsisting structure and new building. Therefore, this technology is expected to be able to be used in similar cases in the future.

  • PDF