• Title/Summary/Keyword: Structures with Damping System

Search Result 379, Processing Time 0.03 seconds

Effect of Sound Damping Sheet on Sound Transmission Loss in Building Structure (건축 구조물에의 차음시트 적용)

  • Kim, Sang-Ryul;Kim, Jae-Seung;Kim, Hyun-Sil;Kang, Hyun-Ju;Mah, Kyung-Up;Han, Mun-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1723-1728
    • /
    • 2000
  • This paper deals experimentally with the effect of the sound-damping sheet on building wall system; brick wall, light wall panel, and gypsum board. Experimental results show that when the sound-damping sheet is attached on wall systems, the mass and/or damping effects result in increasing of STL of wall system depending on the characteristics of the original partition. It is pointed out that the performances of sound damping sheets must be presented with specific wall structures that applied, not by the sound transmission loss of the sheet itself.

  • PDF

MR fluid damper-based smart damping systems for long steel stay cable under wind load

  • Jung, Hyung-Jo;Jang, Ji-Eun;Choi, Kang-Min;Lee, Heon-Jae
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.697-710
    • /
    • 2008
  • Long steel stay cables, which are mainly used in cable-stayed bridges, are easy to vibrate because of their low inherent damping characteristics. A lot of methods for vibration reduction of stay cables have been developed, and several techniques of them have been implemented to real structures, though each has its limitations. Recently, it was reported that smart (i.e. semi-active) dampers can potentially achieve performance levels nearly the same as comparable active devices with few of the detractions. Some numerical and experimental studies on the application of smart damping systems employing an MR fluid damper, which is one of the most promising smart dampers, to a stay cable were carried out; however, most of the previous studies considered only one specific control algorithm in which they are interested. In this study, the performance verification of MR fluid damper-based smart damping systems for mitigating vibration of stay cables by considering the four commonly used semi-active control algorithms, such as the control algorithm based on Lyapunov stability theory, the maximum energy dissipation algorithm, the modulated homogeneous friction algorithm and the clipped-optimal control algorithm, is systematically carried out to find the most appropriate control strategy for the cable-damper system.

Optimal Design of Linear Viscous Damping System for Vibration Control of Adjacent Building Structures (인접구조물의 진동제어를 위한 선형감쇠시스템의 최적설계)

  • Park, Kwan-Soon;Ok, Seung-Yong;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.85-100
    • /
    • 2006
  • This paper proposes an optimal design method of linear viscous dampers for the seismic performance of two adjacent structures with different heights. Accordingly, connection method using diagonal bracing between two floors and connection method between two structures are considered, and the effectiveness of the latter method is confirmed through the comparison of the frequency response functions with respect to damping capacity. Moreover, optimal damping to minimize the response of the adjacent structures in the frequency domain is found. The sensitivity of natural frequency and modal damping according to the damper capacity at each floor is obtained for the optimally designed system. From the sensitivity analysis, the modal damping is evaluated to be very sensitive to the damper installed at higher floor. Therefore, sensitivity-based damping distribution method is proposed. Diagonal bracing connection method, uniform distribution method and sensitivity-based distribution method are compared to each other in terms of seismic performance. The comparative results demonstrate that the proposed method is an effective seismic design method for the adjacent structures.

Telescopic columns as a new base isolation system for vibration control of high-rise buildings

  • Hosseini, Mahmood;Farsangi, Ehsan Noroozinejad
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.853-867
    • /
    • 2012
  • In this paper, a new type of passive energy dissipating system similar to added damping and stiffness (ADAS) and triangular added damping and stiffness (TADAS) is proposed and implemented in the analytical model of a building with hybrid structural system in the structure's base which we call it; Telescopic column. The behavior and performance of a high rise R.C. structure equipped with this system is investigated and compared with conventional base isolation systems such as rubber isolator bearings and friction pendulum bearings. For this purpose a series of ground acceleration records of the San Fernando, Long Beach and Imperial Valley earthquakes are used as the disturbing ground motions in a series of numerical simulations. The nonlinear numerical modeling which includes both material and geometric nonlinearities were carried out by using SAP2000 program. Results show suitable behavior of structures equipped with telescopic columns in controlling the upper stories drifts and accelerations.

A Study on the Characteristics of Dynamic Behavior of Single Layer Latticed Domes with Laminated Rubber Bearing (적층고무받침이 설치된 단층 래티스 돔의 동적 거동 특성에 관한 연구)

  • 한상을;배상달
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.425-432
    • /
    • 2001
  • This paper presents the studies of the characteristics of dynamic behavior of single layer latticed domes with laminated rubber bearing and establishes the effectiveness of the system. The base isolation system installed between base and structures reduces the responses due to earthquake motions and increases the natural period of structures. Numerical analysis is carried out using modal superposition method and Newmark-βmethod which is linear acceleration method with (equation omitted) : 1/2 and β : 1/6. The time interval Δt for response calculation is 0.001 sec. Damping ratio is 2 % as Rayleigh damping and El Centro NS(1940) as earthquake motion is the input excitation data. The acceleration response of dome with base isolation is reduced to 30 % of the response of non-isolation system. From the results of the numerical studies on the models, it is confirmed that base isolation system effectively suppresses the responses of the domes subjected to horizontal earthquakes.

  • PDF

Generalized complex mode superposition approach for non-classically damped systems

  • Chen, Huating;Liu, Yanhui;Tan, Ping
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.271-286
    • /
    • 2020
  • Passive control technologies are commonly used in several areas to suppress structural vibrations by the addition of supplementary damping, and some modal damping may be heavy beyond critical damping even for regular structures with energy dissipation devices. The design of passive control structures is typically based on (complex) mode superposition approaches. However, the conventional mode superposition approach is predominantly applied to cases of under-critical damping. Moreover, when any modal damping ratio is equal or close to 1.0, the system becomes defective, i.e., a complete set of eigenvectors cannot be obtained such that some well-known algorithms for the quadratic eigenvalue problem are invalid. In this paper, a generalized complex mode superposition method that is suitable for under-critical, critical and over-critical damping is proposed and expressed in a unified form for structural displacement, velocity and acceleration responses. In the new method, the conventional algorithm for the eigenvalue problem is still valid, even though the system becomes defective due to critical modal damping. Based on the modal truncation error analysis, modal corrected methods for displacement and acceleration responses are developed to approximately consider the contribution of the truncated higher modes. Finally, the implementation of the proposed methods is presented through two numerical examples, and the effectiveness is investigated. The results also show that over-critically damped modes have a significant impact on structural responses. This study is a development of the original complex mode superposition method and can be applied well to dynamic analyses of non-classically damped systems.

A Method for Checking Missed Eigenvalues in Eigenvalue Analysis with Damping Matrix

  • Jung, Hyung-Jo;Kim, Dong-Hyawn;Lee, In-Won
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.31-38
    • /
    • 2001
  • In the case of the non-proportionally damped system such as the soil-structure interaction system, the structural control system and composite structures, the eigenproblem with the damping matrix should be necessarily performed to obtain the exact dynamic response. However, most of the eigenvalue analysis methods such as the subspace iteration method and the Lanczos method may miss some eigenvalues in the required ones. Therefore, the eigenvalue analysis method must include a technique to check the missed eigenvalues to become the practical tools. In the case of the undamped or proportionally damped system the missed eigenvalues can easily be checked by using the well-known Sturm sequence property, while in the case of the non-proportionally damped system a checking technique has not been developed yet. In this paper, a technique of checking the missed eigenvalues for the eigenproblem with the damping matrix is proposed by applying the argument principle. To verify the effectiveness of the proposed method, two numerical examples are considered.

  • PDF

Relation Between Welding Shapes and the Vibration Energy Flows of Steel Plate (강판의 용접형상과 진동에너지의 변화에 관한 연구)

  • Yu, Y.H.
    • Journal of Power System Engineering
    • /
    • v.6 no.4
    • /
    • pp.36-42
    • /
    • 2002
  • In the structures of automobiles and ships which have engines for works, the vibration energies generated by the engines are transferred to dissipation parts through the structures which is welded and bolted with beams and plates. The vibration energies generated by resonance frequencies are the reasons of the resonance phenomena. To solve these problems, up to the present, we have studied to avoid the resonance, and add the higher damping characteristics. However, we need to understand the structural energy flows, to design the structures clearly which have the characteristic of welding. The object of this study is to make differences clear in the characteristics of structures which have some welded part on an homogenous flat plate. In this investigation, we study the flows of structural vibration energy experimently, and then, some knowledge for dynamic structural design is obtained.

  • PDF

Variability analysis on modal parameters of Runyang Bridge during Typhoon Masta

  • Mao, Jian-Xiao;Wang, Hao;Xun, Zhi-Xiang;Zou, Zhong-Qin
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.653-663
    • /
    • 2017
  • The modal parameters of the deck of Runyang Suspension Bridge (RSB) as well as their relationships with wind and temperature are studied based on the data recorded by its Structural Health Monitoring System (SHMS). Firstly, frequency analysis on the vertical responses at the two sides of the deck is carried out to distinguish the vertical and torsional vibration modes. Then, the vertical, torsional and lateral modal parameters of the deck of RSB are identified using Hilbert-Huang Transform (HHT) and validated by the identified results before RSB was opened to traffic. On the basis of this, the modal frequencies and damping ratios of RSB during the whole process of Typhoon Masta are obtained. And the correlation analysis on the modal parameters and wind environmental factors is then conducted. Results show that the HHT can achieve an accurate modal identification of RSB and the damping ratios show an obvious decay trend as the frequencies increase. Besides, compared to frequencies, the damping ratios are more sensitive to the environmental factors, in particular, the wind speed. Further study on configuring the variation law of modal parameters related with environmental factors should be continued.

A Study on the Wave Drift Damping of Ship in Waves (파랑중 선박의 표류감쇠에 관한 연구)

  • 이호영;박홍식;신현경
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.7-12
    • /
    • 2000
  • As the offshore oil fields are moved to the deep ocean, the oil production systems of FPSO(Floating production storage and offloading system) are building these days and so it is the most important to estimate the drift motion and damping effects the drift motion importantly. The components of damping consist of viscous, wave radiation effect and wave drift damping. It is need to estimate the wave drift damping exactly among them. The wave drift damping means the change rate of mean wave drift force with respect to the ship and ocean structures speed. In order to calculate this, the 3-Dimensional panel method used to translating and pulsating Green function is adopted. The calculation is carried out for series 60(CB = 0.7) vessel and the results are compared with other theoretical ones.

  • PDF