• 제목/요약/키워드: Structures with Damping System

검색결과 379건 처리시간 0.033초

모달 파라미터를 이용한 보 구조물의 모델링 (Modeling of Beam Structures from Modal Parameters)

  • 황우석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.519-522
    • /
    • 2006
  • Accurate modeling of a dynamic system from experimental data is the bases for the model updating or heath monitoring of the system. Modal analysis or modal test is a routine process to get the modal parameters of a dynamic system. The modal parameters include the natural frequencies, damping ratios and mode shapes. This paper presents a new method that can derive the equations of motion for a dynamic system from the modal parameters obtained by the modal analysis or modal test. The present method based on the relation between the eigenvalues and eigenvectors of the state space equation derives the mass, damping and stiffness matrices of the system. The modeling of a cantilevered beam from modal parameters is an example to prove the efficiency and accuracy of the present method. Using the lateral displacements only, not the rotations, gives limited information for the system. The numerical verification up to now gives reasonable results and the verification with the test data is scheduled.

  • PDF

유막 저어널 베어링이 회전체에 미치는 진동 특성에 관한 연구 (A Study on the Vibration Characteristics of Rotor System with Fluid Film Bearing)

  • 박성환;오택열
    • 한국정밀공학회지
    • /
    • 제19권10호
    • /
    • pp.37-44
    • /
    • 2002
  • The dynamic behavior of rotor-bearing system has been investigated using finite element method. A procedure is presented for dynamic modeling of rotor-bearing system which consists of shaft elements, rigid disk, flexible bearing and support structure. A finite element model including the effects of rotary inertia, shear deformation, gyroscopic moments is developed. Linear stiffness and damping coefficients are calculated for 2 lobe sleeve bearing. The whirl frequency, mode shape, stability and unbalance response of rotor system including effects of bearing coefficient and support structures are calculated.

홉킨슨 압력봉(Hopkinson pressure bar)을 이용한 동적 충격센서 보정기술 연구 (A Study on the Calibration Method for Dynamic Shock Sensor Using Hopkinson Pressure Bar System)

  • 오세욱;민경조;조상호
    • 화약ㆍ발파
    • /
    • 제38권1호
    • /
    • pp.23-29
    • /
    • 2020
  • 발파나 충격과 관련된 연구에서 충격센서를 이용한 하중 및 진동의 계측이 널리 사용되고 있다. 하지만 대부분의 충격센서는 고가이며 외부로부터의 손상에 대해 보호할 필요성이 존재한다. 본 연구에서는 충격센서의 외부 구조적 변화에 따른 계측 대상 매질로부터 입사되는 하중정보의 왜곡현상을 보정할 수 있는 방법에 대해 고찰하였다. 홉킨슨 압력봉 시스템을 이용해 충격센서로 전달되는 충격가속도를 산출하였으며, 이와 동시에 충격진동의 감쇠를 야기하는 센서 홀더를 고안 및 적용하여 센서의 출력 값에 대한 비교분석을 수행하였다. 결과적으로 센서에 적용된 외부 구조적 변화가 센서의 진동운동 자체를 왜곡시키는 비선형 거동이 아닌 경우 본 방법을 통한 충격센서 보정기술이 합리적으로 작용할 수 있을 것으로 판단하였다.

Damage detection from the variation of parameter matrices estimated by incomplete FRF data

  • Rahmatalla, Salam;Eun, Hee-Chang;Lee, Eun-Taik
    • Smart Structures and Systems
    • /
    • 제9권1호
    • /
    • pp.55-70
    • /
    • 2012
  • It is not easy to experimentally obtain the FRF (Frequency Response Function) matrix corresponding to a full set of DOFs (degrees of freedom) for a dynamic system. Utilizing FRF data measured at specific positions, with DOFs less than that of the system, as constraints to describe a damaged system, this study identifies parameter matrices such as mass, stiffness and damping matrices of the system, and provides a damage identification method from their variations. The proposed parameter identification method is compared to Lee and Kim's method and Fritzen's method. The validity of the proposed damage identification method is illustrated in a simple dynamic system.

마찰감쇠기가 설치된 비선형 단자유도 건물의 등가감쇠비 (Equivalent Damping Ratio of the Inelastic SDOF Structures with Friction Damper)

  • 김형섭;민경원;이상현;박지훈;문병욱
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.492-499
    • /
    • 2004
  • The purpose of this paper is to present a design procedure of coulomb friction dampers for controlling elastic and inelastic responses of building structures. The equivalent damping and frequency increased by the friction damper are estimated using ATC-40 and ATC-55 procedures which provide equivalent linear system for bilinear one, and then a design formula to achieve target performance response level by friction damper is presented. It is identified that there exists error between the responses obtained by this formula and by performing nonlinear analysis and the features of the error vary according to the hardening ratio, yield strength ratio, and structural period. Equations for compensating this er개r are reposed based on the least square method, and the results from numerical analyses indicate that the error is significantly reduced, and the proposed formula can be used without much error for designing coulomb friction damper for retrofitting a structure showing elastic or inelastic behavior.

  • PDF

Generic optimization, energy analysis, and seismic response study for MSCSS with rubber bearings

  • Fan, Buqiao;Zhang, Xun'an;Abdulhadi, Mustapha;Wang, Zhihao
    • Earthquakes and Structures
    • /
    • 제19권5호
    • /
    • pp.347-359
    • /
    • 2020
  • The Mega-Sub Controlled Structure System (MSCSS), an innovative vibration passive control system for building structures, is improved by adding lead rubber bearings (LRBs) on top of the substructure. For the new system, a genetic algorithm is used to optimize the dynamic parameters and distributions of dampers and LRBs. The program uses various seismic performance indicators as optimization objectives, and corresponding results are compared. It is found that the optimization procedure for maximizing the energy dissipation ratio yields the best solutions, and optimized models have consistent seismic performances under different earthquakes. Seismic performances of optimized MSCSS models with and without LRBs, as well as the traditional Mega-Sub Structure model, are evaluated and compared under El Centro wave, Taft wave and 20 other artificial waves. In both elastic and plastic analysis, the model with LRBs shows significantly smaller story drift and horizontal acceleration than those of the other two models, and fewer plastic hinges are developed during severe earthquakes. Energy analysis also shows that LRBs installed in proper locations increase the deformation and energy dissipation of dampers, thereby significantly reduce the kinetic, potential, and hysteretic energy in the structure. However, LRBs do not have to be mounted on all the additional columns. It is also demonstrated that LRBs at unfavorable locations can decrease the energy dissipation for dampers. After LRBs are installed, the optimal damping coefficient and the optimal damping exponent of dampers are reduced to produce the best damping effect.

Response spectrum analysis considering non-classical damping in the base-isolated benchmark building

  • Chen, Huating;Tan, Ping;Ma, Haitao;Zhou, Fulin
    • Structural Engineering and Mechanics
    • /
    • 제64권4호
    • /
    • pp.473-485
    • /
    • 2017
  • An isolated building, composed of superstructure and isolation system which have very different damping properties, is typically non-classical damping system. This results in inapplicability of traditional response spectrum method for isolated buildings. A multidimensional response spectrum method based on complex mode superposition is herein introduced, which properly takes into account the non-classical damping feature in the structure and a new method is developed to estimate velocity spectra from the commonly used displacement or pseudo-acceleration spectra based on random vibration theory. The error of forced decoupling method, an approximated approach, is discussed in the viewpoint of energy transfer. From the base-isolated benchmark model, as a numerical example, application of the procedure is illustrated companying with comparison study of time-history method, forced decoupling method and the proposed method. The results show that the proposed method is valid, while forced decoupling approach can't reflect the characteristics of isolated buildings and may lead to insecurity of structures.

고감쇠고무와 강재를 이용한 복합제진댐퍼의 구조성능평가 (Evaluation on the Structural Performance of Hybrid Damper Using High-damping Rubber and Steel)

  • 김지영;정인용;김형근;김도현
    • 한국공간구조학회논문집
    • /
    • 제16권3호
    • /
    • pp.99-106
    • /
    • 2016
  • The proposed hybrid damper installs at a coupling beam and consists of a high-damping rubber (HDR) and steel pin. The proposed hybrid damper adopted a pin-lock system acts as a viscoelastic damper under wind load (small displacement) while it behaves as a hysteretic damper under earthquake load (large displacement). In this paper, the pin-lock mechanism and structural performance of the proposed hybrid damper is evaluated through experiment. Experiments were carried out with the variables which displacement, loading frequency and steel pin quantities were used. Test results showed that the pin-lock mechanism and the performance of the hybrid damper under a large displacement were verified. Also equivalent damping ratios of HDR were increasing at a small displacement as displacement amplitudes were increasing. However HDR did not depend on frequency.

환경적 부하로 인해 발생되는 건축물의 진동을 위한 지능형 예측 PID 제어시스템에 관한 연구 (A Study on Intelligent Predictive PID Control Systems for Vibration of Structure due to Environmental Loads)

  • 조현철;이영진;이진우;이권순
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.798-800
    • /
    • 1998
  • In recent years, advances in construction techniques and materials have given rise to flexible light-weight structures. Because these structures extremely susceptib environmental loads, these random loadings u produce large deflection and acceleration on structures. Vibration control system of structur becoming an integral part of the structural syst the next generation of tall building. The proposed control system is applied to s degree of structure with mass damping and com with conventional PID and neural network PID system.

  • PDF

Dynamic characteristics of structures with multiple tuned mass dampers

  • Jangid, R.S.
    • Structural Engineering and Mechanics
    • /
    • 제3권5호
    • /
    • pp.497-509
    • /
    • 1995
  • Effectiveness of multiple tuned mass dampers (MTMD) in suppressing the dynamic response of base excited structure for first mode vibration is investigated. The effectiveness of the MTMD is expressed by the ratio of the root mean square (RMS) displacement of the structure with MTMD to corresponding displacement without MTMD. The frequency content of base excitation is modelled as a broad-band stationary random process. The MTMD's with uniformly distributed natural frequencies are considered for this purpose. A parametric study is conducted to investigate the fundamental characteristics of the MTMD's and the effect of important parameters on the effectiveness of the MTMD's. The parameters include: the fundamental characteristics of the MTMD system such as damping, mass ratio, total number of MTMD, tuning frequency ratio, frequency spacing of the dampers and frequency content of the base excitation. It has been shown that MTMD can be more effective and more robust than a single TMD with equal mass and damping ratio.