• Title/Summary/Keyword: Structured-surface

Search Result 333, Processing Time 0.043 seconds

Feature Recognition and Segmentation via Z-map in Reverse Engineering (역공학에서 Z-map을 이용한 특징형상 탐색 및 영역화)

  • 김재현;신양호;박정환;고태조;유우식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.176-183
    • /
    • 2003
  • The paper presents a feature recognition and segmentation method for surface approximation in reverse engineering. Efficient digitizing plays an important role in constructing a computational surface model from a physical part-surface without its CAD model on hand. Depending on its measuring source (e.g., touch probe or structured light), each digitizing method has its own strengths and weaknesses in terms of speed and accuracy. The final goal of the research focuses on an integration of two different digitizing methods: measuring by the structured light and that by the touch probe. Gathering bulk of digitized points (j.e., cloud-of-points) by use of a laser scanning system, we construct a coarse surface model directly from the cloud-of-points, followed by the segmentation process where we utilize the z-map filleting & differencing to trace out feature boundary curves. The feature boundary curves and the approximate surface model could be inputs to further digitizing by a scanning touch probe. Finally, more accurate measuring points within the boundary curves can be obtained to construct a finer surface model.

New constructive model for structures soil

  • Zhang, Sheng;Li, Haichao;Teng, Jidong
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.725-738
    • /
    • 2016
  • A theoretical study of the behavior of structured soils is presented herein. By introducing the effect of soil structure and loading history into the Cam Clay model, a new model was formulated. The concept of differing void ratios was modified to combine structural parameters and the over consolidation ratio, and an evolution law was proposed. Upon introducing the concept of the subloading yield surface, a new two-yield surface model was obtained. The predicted results were compared to the experimental data, demonstrating that the new model provided satisfactory qualitative modeling of many important features of structured soils.

Properties of Urchin-Structured Zinc Oxide Nanorods Gas Sensor by Using Polystyrene Sphere Array (Polystyrene 입자 정렬을 이용한 성게 구조 ZnO 나노막대 가스 센서의 특성)

  • Kim, Jong-Woo;Kim, Do Hoon;Ki, Tae Hoon;Park, Jung Hyuk;Myoung, Jae-Min
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.658-663
    • /
    • 2017
  • Urchin-structured zinc oxide(ZnO) nanorod(NR) gas sensors were successfully demonstrated on a polyimide(PI) substrate, using single wall carbon nanotubes(SWCNTs) as the electrode. The ZnO NRs were grown with ZnO shells arranged at regular intervals to form a network structure with maximized surface area. The high surface area and numerous junctions of the NR network structure was the key to excellent gas sensing performance. Moreover, the SWCNTs formed a junction barrier with the ZnO which further improved sensor characteristics. The fabricated urchin-structured ZnO NR gas sensors exhibited superior performance upon $NO_2$ exposure with a stable response of 110, fast rise and decay times of 38 and 24 sec, respectively. Comparative analyses revealed that the high performance of the sensors was due to a combination of high surface area, numerous active junction points, and the use of the SWCNTs electrode. Furthermore, the urchin-structured ZnO NR gas sensors showed sustainable mechanical stability. Although degradation of the devices progressed during repeated flexibility tests, the sensors were still operational even after 10000 cycles of a bending test with a radius of curvature of 5 mm.

3D shape reconstruction using laser slit beam and image block (레이저슬릿광과 이미지블럭을 이용한 경면물체 형상측정알고리즘)

  • 곽동식;조형석;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.93-96
    • /
    • 1996
  • Structured laser light is a widely used method for obtaining 3D range information in Machine Vision. However, The structured laser light method is based on assumption that the surface of objects is Lambertian. When the observed surfaces are highly specularly reflective, the laser light can be detected in various parts on the image due to a specular reflection and secondary reflection. This makes wrong range data and the image sensor unusable for the specular objects. To discriminate wrong range data from obtained image data, we have proposed a new algorithm by using the cross section of image block. To show the performance of the proposed method, a series of experiments was, carried out on: the simple geometric shaped objects. The proposed method shows a dramatic improvement of 3D range data better than the typical structured laser light method.

  • PDF

A Novel Robot Sensor System Utilizing the Combination Of Stereo Image Intensity And Laser Structured Light Image Information

  • Lee, Hyun-Ki;Xingyong, Song;Kim, Min-Young;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.729-734
    • /
    • 2005
  • One of the important research issues in mobile robot is how to detect the 3D environment fast and accurately, and recognize it. Sensing methods of utilizing laser structured light and/or stereo vision are representatively used among a number of methodologies developed to date. However, the methods are still in need of achieving high accuracy and reliability to be used for real world environments. In this paper to implement a new robotic environmental sensing algorithm is presented by combining the information between intensity image and that of laser structured light image. To see how effectively the algorithm applied to real environments, we developed a sensor system that can be mounted on a mobile robot and tested performance for a series of environments.

  • PDF

A Study on Plastic Injection Molding of NanosStructured Surface with a Local Mold Heating System (국부 가열 금형을 이용한 플라스틱 나노 구조표면 사출성형 연구)

  • La, Moon Woo;Park, Jang Min;Kim, Dong Earn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.8-13
    • /
    • 2015
  • In this study, we fabricated and characterized a nanostructured surface based on a plastic injection molding with a local mold heating (LMH) system. A metal mold core with a closed packed nano convex array (CVA) was achieved by integrated engineering procedures: (1) master template fabrication by anodic aluminum oxidation (AAO), (2) nickel electroforming (NE) process, and (3) post-processing by precision machining. The nickel mold core was utilized to replicate a surface with a closed packed nano concave-array (CCA) based on injection molding using cyclic olefin copolymer (COC) as a plastic material. In particular, an LMH system was introduced to enhance transcription quality of the nano structures by delaying solidification of molten polymer near the surface of the mold core.

Study on Frictional Characteristics of Sub-micro Structured Silicon Surfaces (서브 마이크로 구조를 가진 실리콘 표면의 마찰 특성 연구)

  • Han, Ji-Hee;Han, Gue-Bum;Jang, Dong-Yong;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.33 no.3
    • /
    • pp.92-97
    • /
    • 2017
  • The understanding of the friction characteristics of micro-textured surface is of great importance to enhance the tribological properties of nano- and micro-devices. We fabricate rectangular patterns with submicron-scale structures on a Si wafer surface with various pitches and heights by using a focused ion beam (FIB). In addition, we fabricate tilted rectangular patterns to identify the influence of the tilt angle ($45^{\circ}$ and $135^{\circ}$) on friction behaviour. We perform the friction test using lateral force microscopy (LFM) employing a colloidal probe. We fabricate the colloidal probe by attaching a $10{\pm}1-{\mu}m$-diameter borosilicate glass sphere to a tipless silicon cantilever by using a ultraviolet cure adhesive. The applied normal loads range between 200 nN and 1100 nN and the sliding speed was set to $12{\mu}m/s$. The test results show that the friction behavior varied depending on the pitch, height, and tilt angle of the microstructure. The friction forces were relatively lower for narrower and deeper pitches. The comparison of friction force between the sub-micro-structured surfaces and the original Si surface indicate an improvement of the friction property at a low load range. The current study provides a better understanding of the influence of pitch, height, and tilt angle of the microstructure on their tribological properties, enabling the design of sub-micro- and micro-structured Si surfaces to improve their mechanical durability.

Enhancement of Photoluminescence by Ag Localized Surface Plasmon Resonance for Ultraviolet Detection

  • Lyu, Yanlei;Ruan, Jun;Zhao, Mingwei;Hong, Ruijin;Lin, Hui;Zhang, Dawei;Tao, Chunxian
    • Current Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • For higher sensitivity in ultraviolet (UV) and even vacuum ultraviolet (VUV) detection of silicon-based sensors, a sandwich-structured film sensor based on Ag Localized Surface Plasmon Resonance (LSPR) was designed and fabricated. This film sensor was composed of a Ag nanoparticles (NPs) layer, SiO2 buffer and fluorescence layer by physical vapour deposition and thermal annealing. By tuning the annealing temperature and adding the SiO2 layer, the resonance absorption wavelength of Ag NPs matched with the emission wavelength of the fluorescence layer. Due to the strong plasmon resonance coupling and electromagnetic field formed on the surface of Ag NPs, the radiative recombination rate of the luminescent materials and the number of fluorescent molecules in the excited state increased. Therefore, the fluorescent emission intensity of the sandwich-structured film sensor was 1.10-1.58 times at 120-200 nm and 2.17-2.93 times at 240-360 nm that of the single-layer film sensor. A feasible method is provided for improving the detection performance of UV and VUV detectors.