References
- Asaoka, A., Nakano, M. and Noda, T. (2000), "Superloading yield surface concept for highly structured soil behavior", Soil. Found., 40(2), 99-110.
- Burland, J.B. (1990), "On the compressibility and shear strength of natural clays", Geotechnique, 40(3), 329-378. https://doi.org/10.1680/geot.1990.40.3.329
- Callisto, L. and Calabresi, G. (1998), "Mechanical behaviour of a natural soft clay", Geotechnique, 48(4), 495-513. https://doi.org/10.1680/geot.1998.48.4.495
- Cuccovillo, T. and Coop, M.R. (1999), "On the mechanics of structured sands", Geotechnique, 49(6), 741-760. https://doi.org/10.1680/geot.1999.49.6.741
- Hashiguchi, K. and Mase, T. (2007), "Extended yield condition of soils with tensile yield strength and rotational hardening, Int. J. Plastic., 23(12), 1939-1956. https://doi.org/10.1016/j.ijplas.2007.07.011
- Hashiguchi, K. and Ueno, M. (1977), "Elastoplastic constitutive laws of granular material", Proeedings of the 9th International Conference on Soil Mechanics Foundation, Engineering, (S. Murayama and A.N. Schofield Eds.), Tokyo, Japan, July, pp. 73-82.
- Huang, M., Liu, Y. and Sheng, D. (2011), "Simulation of yielding and stress-stain behavior of shanghai soft clay", Comput. Geotech., 38(3), 341-353. https://doi.org/10.1016/j.compgeo.2010.12.005
- Liu, M.D. and Carter, J.P. (2002), "A structured cam clay model", Can. Geotech. J., 39(6), 1313-1332. https://doi.org/10.1139/t02-069
- Nakai, T. and Hinokio, M. (2004), "A simple elastoplastic model for normally and overconsolidated soils with unified material parameters", Soils Found., 44(2), 53-70. https://doi.org/10.3208/sandf.44.2_53
- Rouainia, M. and Muir Wood, D. (2000), "An implicit constitutive algorithm for finite strain Cam-clay elasto-plastic model", Mech. Cohesive-Frictional Mater., 5(6), 469-489. https://doi.org/10.1002/1099-1484(200008)5:6<469::AID-CFM105>3.0.CO;2-9
- Suebsuk, J., Horpibulsuk, S. and Liu, M.D. (2010), "Modified structured cam clay: A generalised critical state model for destructured, naturally structured and artificially structured clays", Comput. Geotech., 37(7), 956-968. https://doi.org/10.1016/j.compgeo.2010.08.002
- Suebsuk, J., Horpibulsuk, S. and Liu, M.D. (2011), "A critical state model for overconsolidated structured clays", Comput. Geotech., 38(5), 648-658. https://doi.org/10.1016/j.compgeo.2011.03.010
- Yang, C., Carter, J.P. and Sheng, D. (2014), "Description of compression behaviour of structured soils and its application", Can. Geotech. J., 51(8), 921-933. https://doi.org/10.1139/cgj-2013-0265
- Zhang, S. and Zhang, F. (2009), "A thermo-elasto-viscoplastic model for soft sedimentary rock", Soil. Found., 49(4), 583-595. https://doi.org/10.3208/sandf.49.583
- Zhang, F., Yashima, A., Nakai, T., Ye, G.L. and Aung, H. (2005), "An elasto-viscoplastic model for soft sedimentary rock based on tij concept and subloading yield surface", Soil. Found., 45(1), 65-73.
- Zhang, S., Leng, W., Zhang, F. and Xiong, Y. (2012), "A simple thermo-elastoplastic model for geomaterials", Int. J. Plastic., 34, 93-113. https://doi.org/10.1016/j.ijplas.2012.01.011
Cited by
- Zemin-yapı etkileşiminin betonarme bacaların dinamik davranışına etkisi vol.7, pp.1, 2016, https://doi.org/10.29130/dubited.465732
- One-dimensional nonlinear consolidation behavior of structured soft clay under time-dependent loading vol.18, pp.3, 2019, https://doi.org/10.12989/gae.2019.18.3.299
- A Model of Undrained Stress-Strain Curves Considering Stress Path and Strain Softening vol.21, pp.11, 2016, https://doi.org/10.1061/(asce)gm.1943-5622.0002193