References
- M. P. Lesser, "Recent charge-coupled device optimization results at steward observatory," Proc. SPIE 1242, 164-169 (1990).
- W. A. R. Franks, M. J. Kiik, and A. Nathan, "Inorganic phosphor coatings for UV-responsive CCD image sensors," Proc. SPIE 3965, 33-41 (2000).
- A. Deslandes, A. B. Wedding, S. R. Clarke, J. G. Matisons, and J. S. Quinton "Characterization of PVD Lumogen films for wavelength conversion applications," Proc. SPIE 5649, 616-626 (2005).
- S. J. Keough, T. L. Hanley, A. B. Wedding, and J. S. Quinton, "Grazing incidence X-ray studies of ultra-thin Lumogen films," Surf. Sci. 601, 5744-5749 (2007). https://doi.org/10.1016/j.susc.2007.06.053
- D. W. Zhang, X. Tian, Y. S. Huang, Z. J. Ni, and S. L. Zhuang, "Preparation and spectral characterization of Lumogen coatings for UV-responsive CCD image sensors," Spectrosc. Spectral Anal. 30, 1171-1174 (2010). https://doi.org/10.3964/j.issn.1000-0593(2010)05-1171-04
- L. Jiang, D. W. Zhang, C. X. Tao, Y. S. Huang, Q. Wang, Z. J. Ni, S. L. Zhuang,"Preparation by spin-coating technology and characterization of UV-enhanced Lumogen film," Spectrosc. Spectral Anal. 33, 468-470 (2013). https://doi.org/10.3964/j.issn.1000-0593(2013)02-0468-03
- C. X. Tao, J. Run, S. P. Shu, Z. R. Lu, R. J. Hong, D. W. Zhang, and Z. X. Han, "Thickness dependence of Ultraviolet-excited photoluminescence efficiency of Lumogen film coated on charge-coupled device," Curr. Opt. Photon. 1, 284-288 (2017). https://doi.org/10.3807/COPP.2017.1.4.284
- J. R. Lakowicz, "Radiative decay engineering: metal-enhanced fluorescence," in Principles of Fluorescence Spectroscopy, 3rd ed., J. R. Lakowicz, Ed., (Springer, Boston, MA, USA, 2006), pp. 841-859.
- J. R. Lakowicz, "Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission," Anal. Biochem. 337, 171-194 (2005). https://doi.org/10.1016/j.ab.2004.11.026
- C. Chen, L. Zhang, M. Yang, C. X. Tao, Z. X. Han, B. Chen, and H. P. Zeng, "Size and distance dependent fluorescence enhancement of nanoporous gold," Opt. Express 25, 9901-9910 (2017). https://doi.org/10.1364/OE.25.009901
- N. Q. Yin, Y. S. Liu, L. Liu, J. M. Lei, T. T. Jiang, H. J. Wang, L. X. Zhu, X. L. Xu, "Fluorescence enhancement of Ru(bpy)32+ by core-shell Ag@SiO2 nanocomposites," J. Alloys Compd. 581, 6-10 (2013). https://doi.org/10.1016/j.jallcom.2013.06.151
- Y. B. Shen, T. He, W. H. Wang, Y. L. Zhan, X. Hu, B. F. Yuan, and X. C. Zhou "Fluorescence enhancement on silver nano-plates at the single- and sub-nanoparticle level," Nanoscale 7, 20132-20141 (2015). https://doi.org/10.1039/C5NR06146F
- R. Reisfeld, and V. Levchenko, "The influence of surface plasmons on fluorescence of the dye Lumogen F red 300 in condensed phase," Opt. Mater. 63, 88-94 (2017). https://doi.org/10.1016/j.optmat.2016.08.044
- I. M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, and H. V. Demir, "Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity," Opt. Express 15, 14289-14298 (2007). https://doi.org/10.1364/OE.15.014289
- T. Jin, Y. Zhang, Y. L. Li, W. J. Jing, Y. C. Li, L. Z. Fan, X. H. Li, "Ag@SiO2 nanoparticles performing as a nanoprobe for selective analysis of 2-aminoanthracene in wastewater samples via metal-enhanced fluorescence," Talanta 200, 242-248 (2019). https://doi.org/10.1016/j.talanta.2019.03.054
- H.-X. Zhang, X.-M. Lin, A.-L. Wang, Y.-L. Zhao, and H.-B. Chu, "Fluorescence enhancement of europium complexes by core-shell Ag@SiO2 nanoparticles," Spectrochim. Acta, Part A 151, 716-722 (2015). https://doi.org/10.1016/j.saa.2015.07.022
- L. J. Kong, Y. F. Zhao, K. Kong, Y.-L. Zhao, and H.-B. Chu, "Fluorescence enhancement of europium nitrobenzoates by Ag@SiO2 nanoparticles in solution," J. Lumin. 186, 255-261 (2017). https://doi.org/10.1016/j.jlumin.2017.02.044
- E. Martinsson, "Nanoplasmonic sensing using metal nanoparticles," Ph. D. dissertation, Linkoping University, Sweden, 2014), Chapter 3.
- B. Balamurugan, and T. Maruyama, "Size-modified d bands and associated interband absorption of Ag nanoparticles," J. Appl. Phys. 102, 034306 (2007). https://doi.org/10.1063/1.2767837
- H. A. Atwater, and A. Polman, "Plasmonics for improved photovoltaic devices," Nature Mater. 9, 205-213 (2010). https://doi.org/10.1038/nmat2629
- M. A. Garcia, "Surface plasmons in metallic nanoparticles: fundamentals and applications," J. Phys. D: Appl. Phys. 44, 283001 (2011). https://doi.org/10.1088/0022-3727/44/28/283001
- L. Lu, Y. X. Qian, L. H. Wang, K. K. Ma, and Y. D. Zhang, "Metal-enhanced fluorescence-based core-shell Ag@SiO2 nanoflares for affinity biosensing via target-induced structure switching of aptamer," ACS Appl. Mater. Interfaces 6, 1944-1950 (2014). https://doi.org/10.1021/am4049942
- J. Kang, Y. F. Zhao, H. B. Chu, and Y. L. Zhao, "Tuning the luminescence properties of samarium and dysprosium complexes by Ag@SiO2 nanoparticles," J. Photochem. Photobiol. A 365, 119-124 (2018). https://doi.org/10.1016/j.jphotochem.2018.07.030