• Title/Summary/Keyword: Structured-surface

Search Result 333, Processing Time 0.031 seconds

A Brief Review on Polarization Switching Kinetics in Fluorite-structured Ferroelectrics (플루오라이트 구조 강유전체 박막의 분극 반전 동역학 리뷰)

  • Kim, Se Hyun;Park, Keun Hyeong;Lee, Eun Been;Yu, Geun Taek;Lee, Dong Hyun;Yang, Kun;Park, Ju Yong;Park, Min Hyuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.330-342
    • /
    • 2020
  • Since the original report on ferroelectricity in Si-doped HfO2 in 2011, fluorite-structured ferroelectrics have attracted increasing interest due to their scalability, established deposition techniques including atomic layer deposition, and compatibility with the complementary-metal-oxide-semiconductor technology. Especially, the emerging fluorite-structured ferroelectrics are considered promising for the next-generation semiconductor devices such as storage class memories, memory-logic hybrid devices, and neuromorphic computing devices. For achieving the practical semiconductor devices, understanding polarization switching kinetics in fluorite-structured ferroelectrics is an urgent task. To understand the polarization switching kinetics and domain dynamics in this emerging ferroelectric materials, various classical models such as Kolmogorov-Avrami-Ishibashi model, nucleation limited switching model, inhomogeneous field mechanism model, and Du-Chen model have been applied to the fluorite-structured ferroelectrics. However, the polarization switching kinetics of fluorite-structured ferroelectrics are reported to be strongly affected by various nonideal factors such as nanoscale polymorphism, strong effect of defects such as oxygen vacancies and residual impurities, and polycrystallinity with a weak texture. Moreover, some important parameters for polarization switching kinetics and domain dynamics including activation field, domain wall velocity, and switching time distribution have been reported quantitatively different from conventional ferroelectrics such as perovskite-structured ferroelectrics. In this focused review, therefore, the polarization switching kinetics of fluorite-structured ferroelectrics are comprehensively reviewed based on the available literature.

Fabrication of nano-structured PMMA substrates for the improvement of the optical transmittance (반구형 나노 패턴의 크기에 따른 PMMA기판의 광특성 평가)

  • Park, Y.M.;Shin, H.G.;Kim, B.H.;Seo, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.217-220
    • /
    • 2009
  • This paper presents fabrication method of nano-structured PMMA substrates as well as evaluations of their optical transmittance. For anti-reflective surface, surface coating method had been conventionally used. However, it requires high cost, complicated process and post-processing times. In this study, we suggested the fabrication method of anti-reflective surface by the hot embossing process. Using the nano patterned master fabricated by anodic aluminum oxidation process. Anodic aluminum oxide(AAO) is widely used as templates or a molds for various applications such as carbon nano tube (CNT), nano rod and nano dots. Anodic aluminum oxidation process provides highly ordered regular nano-structures on the large area, while conventional pattering methods such as E-beam and FIB can fabricate arbitrary nano-structures on small area. We fabricated a porous alumina hole array with various inter-pore distance and pore diameter. In order to replicate nano-structures using alumina nano hole array patterns, we have carried out hot-embossing process with PMMA substrates. Finally the nano-structured PMMA substrates were fabricated and their optical transmittances were measured in order to evaluate the charateristivs of anti-reflection. Anti-reflective structure can be applied to various displays and automobile components.

  • PDF

Self-assembly of Fine Particles Applied to the Production of Antireflective Surfaces

  • Kobayashi, Hayato;Moronuki, Nobuyuki;Kaneko, Arata
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.25-29
    • /
    • 2008
  • We introduce a new fabrication process for antireflective structured surfaces. A 4-inch silicon wafer was dipped in a suspension of 300-nm-diameter silica particles dispersed in a toluene solution. When the wafer was drawn out of the suspension, a hexagonally packed monolayer structure of particles self-assembled on almost the complete wafer surface. Due to the simple process, this could be applied to micro- and nano-patterning. The self-assembled silica particles worked as a mask for the subsequent reactive ion etching. An array of nanometer-sized pits could be fabricated since the regions that correspond to the small gaps between particles were selectively etched off. As etching progressed, the pits became deeper and combined with neighboring pits due to side-etching to produce an array of cone-like structures. We investigated the effect of etching conditions on antireflection properties, and the optimum shape was a nano-cone with height and spacing of 500 nm and 300 nm, respectively. This nano-structured surface was prepared on a $30\;{\times}\;10-mm$ area. The reflectivity of the surface was reduced 97% for wavelengths in the range 400-700 nm.

STORAGE OF BROCCOLI BY MAKING THE WATER STRUCTURED -Suppression of metabolism-

  • Oshita, S.;Seo, Y.;Kawagoe, Y.;Rahman, M.A.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.918-925
    • /
    • 1996
  • The effect of structured water by dissolution of xenon was examined from the view point of the suppression of both browning and respiratory metabolism of broccoli. The structured water is formed duet to hydrophobic interaction when xenon gas dissolves into water. NMR measurements were carried out to determine proton spin-spin relaxation time, T2, for water. There was a difference in proton T2 between distilled water and structured water. This can be interpreted as the change of water structure. Fro the broccoli cut in half stored for 16 days at 279K, the section color did not change appreciably for the sample whose water was structured by dissolution of xenon whose initial partial pressure was 0.39MPa. In contrast to this, the browning of section surface was observed for the sample stored under the condition of nitrogen gas at the same partial pressure as xenon and for the sample stored under atmospheric condition . These results led to the conclusion that the suppression of b owning by oxidation was due to structured water but not to applied pressure. Adding to this, the water structured by xenon has resulted in suppression of respiratory metabolism of broccoli.

  • PDF

An elastoplastic model for structured clays

  • Chen, Bo;Xu, Qiang;Sun, De'an
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.213-231
    • /
    • 2014
  • An elastoplastic model for structured clays, which is formulated based on the fact that the difference in mechanical behavior of structured and reconstituted clays is caused by the change of fabric in the post-yield deformation range, is present in this paper. This model is developed from an elastoplastic model for overconsolidated reconstituted clays, by considering that the variation in the yield surface of structured clays is similar to that of overconsolidated reconstituted clays. However, in order to describe the mechanical behavior of structured clays with precision, the model takes the bonding and parabolic strength envelope into consideration. Compared with the Cam-clay model, only two new parameters are required in the model for structured clays, which can be determined from isotropic compression and triaxial shear tests at different confining pressures. The comparison of model predictions and results of drained and undrained triaxial shear tests on four different marine clays shows that the model can capture reasonable well the strength and deformation characteristics of structured clays, including negative and positive dilatancy, strain-hardening and softening during shearing.

Development and Characterization of the Asphalt Binder with Low-heat and Crosslink Structured Additive

  • Eun Kyoung Lee;You Kyoung Kim
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.222-230
    • /
    • 2022
  • In this study, a low-heat additive with a crosslink structure was dispersed in asphalt to simultaneously lower the production temperature of, and to modify the asphalt binder. This low-heat additive was prepared by different feeding ratios of styrene-butadiene-styrene (SBS) and polyvinylchloride (PVC) as polymer modifiers, and ZnO as a crosslinking agent. In order to confirm the crosslinking density and compatibility of the crosslink structured low-heat additive with asphalt, surface free energy, swelling ratio, differential scanning calorimetry (DSC), and scanning electron microscope (SEM) parameters were carefully investigated to examine this relationship, and the role of the crosslink structured low-heat additive. In addition, by measuring the penetration and softening point of the asphalt binder, it was confirmed that it corresponds to PG 64-22. With increasing ZnO in the crosslink structured low-heat additive, the swelling ratio decreased, leading to an increase in crosslinking density. The crosslink structured low-heat additive and the asphalt binder were found to be compatible with each other by DSC and SEM analysis.

Coating Property of Hybrid Structured Photo-Electrode to Increase Dye-Sensitized Solar Cells Efficiency (염료감응형 태양전지의 효율 향상을 위한 하이브리드 구조 광전극의 코팅특성)

  • Kim, Min-Hee;Lee, Hyung-Woo;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.449-455
    • /
    • 2010
  • The hybrid structured photo-electrode for dye-sensitized solar cells was fabricated based on the composites of $TiO_2$ nanoparticles and nanowires. Three samples with different hybrid structures were prepared with 17 vol%, 43 vol%, and 100 vol% nanowires. The energy conversion efficiency was enhanced from 5.54% for pure nanoparticle cells to 6.01% for the hybrid structure with 17 vol% nanowires. For the hybrid structured layers with high nanowires concentration (43 vol% and 100 vol%), the efficiency decreased with the nanowire concentration, because of the decrease of specific surface area, and of thus decreased current density. The random orientations of $TiO_2$ nanowires can be preserved by the doctor blade process, resulted in the enhanced efficiency. The hybrid structured $TiO_2$ layer can possess the advantages of the high surface area of nanoparticles and the rapid electron transport rate and the light scattering effect of nanowires.

Influence of nano alumina coating on the flexural bond strength between zirconia and resin cement

  • Akay, Canan;Tanis, Merve Cakirbay;Mumcu, Emre;Kilicarslan, Mehmet Ali;Sen, Murat
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • PURPOSE. The purpose of this in vitro study is to examine the effects of a nano-structured alumina coating on the adhesion between resin cements and zirconia ceramics using a four-point bending test. MATERIALS AND METHODS. 100 pairs of zirconium bar specimens were prepared with dimensions of $25mm{\times}2mm{\times}5mm$ and cementation surfaces of $5mm{\times}2mm$. The samples were divided into 5 groups of 20 pairs each. The groups are as follows: Group I (C) - Control with no surface modification, Group II (APA) - airborne-particle-abrasion with $110{\mu}m$ high-purity aluminum oxide ($Al_2O_3$) particles, Group III (ROC) - airborne-particle-abrasion with $110{\mu}m$ silica modified aluminum oxide ($Al_2O_3+SiO_2$) particles, Group IV (TCS) - tribochemical silica coated with $Al_2O_3$ particles, and Group V (AlC) - nano alumina coating. The surface modifications were assessed on two samples selected from each group by atomic force microscopy and scanning electron microscopy. The samples were cemented with two different self-adhesive resin cements. The bending bond strength was evaluated by mechanical testing. RESULTS. According to the ANOVA results, surface treatments, different cement types, and their interactions were statistically significant (P<.05). The highest flexural bond strengths were obtained in nano-structured alumina coated zirconia surfaces (50.4 MPa) and the lowest values were obtained in the control group (12.00 MPa), both of which were cemented using a self-adhesive resin cement. CONCLUSION. The surface modifications tested in the current study affected the surface roughness and flexural bond strength of zirconia. The nano alumina coating method significantly increased the flexural bond strength of zirconia ceramics.