• Title/Summary/Keyword: Structure function

Search Result 6,754, Processing Time 0.033 seconds

A Far Field Solution of the Slowly Varying Drift Force on an Offshore Structure in Bichromatic Waves - Two Dimensional Problems

  • Lee, Sang-Moon
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • A far field solution of the slowly varying force on an offshore structure by gravity ocean waves was shown as a function of the reflection and transmission of the body disturbed waves. The solution was obtained from the conservation of the momentum flux, which simply describes various wave forces, while making it unnecessary to compute complicated integration over a control surface. The solution was based on the assumption that the frequency difference of the bichromatic incident waves is small and its second order term is negligible. The final solution is expressed in term of the reflection and transmission waves, i.e. their amplitudes and phase angles. Consequently, it shows that not only the amplitudes but also the phase differences make critical contributions to the slowly varying force. In a limiting case, the slowly varying force solution gives the one of the mean drift force, which is only dependent on the reflection wave amplitude. An approximation is also suggested in a case where only the mean drift force information is available.

Electronic Spin Filter via Spin Superlattice

  • Han, Jae-Ho;Lee, H.W.;You, Chun-Yeol
    • Journal of Magnetics
    • /
    • v.12 no.2
    • /
    • pp.77-80
    • /
    • 2007
  • Recently there was a proposal for a spin filter by using the spin superlattice structure. In a certain energy range, the proposed structure exhibits a high spin filtering efficiency close to 100%. Unfortunately such energy range turns out to be narrow. In this paper, we report a method to widen the energy range by using an analogy to optical anti-reflection coating. In optics, it is well known that a stack of alternating layers of two dielectric materials can function as a highly transmissive or reflective filter for wide range of wavelength. Since electrons also have wave character as light, it would be possible to make an electronic analog of an optical filter. We demonstrate that alternating layers of two materials with different g-factors can function as a spin filter that allows electrons to be transmitted only when their spins point towards a certain particular direction. This spin-superlattice-based spin filter operates in wide energy ranges, curing the problem in the previous proposal.

Structural damage detection based on MAC flexibility and frequency using moth-flame algorithm

  • Ghannadi, Parsa;Kourehli, Seyed Sina
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.649-659
    • /
    • 2019
  • Vibration-based structural damage detection through optimization algorithms and minimization of objective function has recently become an interesting research topic. Application of various objective functions as well as optimization algorithms may affect damage diagnosis quality. This paper proposes a new damage identification method using Moth-Flame Optimization (MFO). MFO is a nature-inspired algorithm based on moth's ability to navigate in dark. Objective function consists of a term with modal assurance criterion flexibility and natural frequency. To show the performance of the said method, two numerical examples including truss and shear frame have been studied. Furthermore, Los Alamos National Laboratory test structure was used for validation purposes. Finite element model for both experimental and numerical examples was created by MATLAB software to extract modal properties of the structure. Mode shapes and natural frequencies were contaminated with noise in above mentioned numerical examples. In the meantime, one of the classical optimization algorithms called particle swarm optimization was compared with MFO. In short, results obtained from numerical and experimental examples showed that the presented method is efficient in damage identification.

Gd effect on microstructure and properties of the Modified-690 alloy for function structure integrated thermal neutron shielding

  • Cheng Zhang;Jie Pan;Zixie Wang;Zhaoyu Wu;Qiliang Mei;Qianxue Ding;Jing Gao;Xueshan Xiao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1541-1558
    • /
    • 2023
  • The new Modified-690Gd alloy, namely as Ni-30Cr-(10-x) Fe-xGd (x = 0.5, 1.0, 1.5,2.0, 3.0 wt%) for function structure integrated thermal neutron shielding has been prepared and characterized. The Modified-690Gd alloy was mainly composed of γ austenite matrix and (Ni, Cr, Fe)5Gd precipitated along grain boundaries. The new Modified-690Gd alloy had great mechanical properties, which had the tensile strength exceeding 620 MPa and the elongation being above 50%. Meanwhile, this alloy had excellent weldability and good corrosion resistance in boric acid. The new Modified-690Gd alloy is expected to be a kind of high efficiency thermal neutron shielding materials.

The Use of Living Services and Hierarchy Through Class and Linkage Structure Analysis - Focusing on Boryeong City - (농촌생활 서비스 기능의 중심지 계층·연계구조 분석을 통한 농촌중심지 위계 및 생활권 설정연구 - 보령시를 중심으로 -)

  • Jong Im Yang
    • Journal of Agricultural Extension & Community Development
    • /
    • v.30 no.2
    • /
    • pp.103-118
    • /
    • 2023
  • This study aims to develop the living SOC function index and classified classes using the GIS-based spatial analysis method by applying the "Central Place Theory" as basic data for classifying living areas necessary for establishing rural spatial strategies in Boryeong. Boryeong-si is classified as a southern living area in the northern living area, centering on Daecheon-dong, the first class, and it is analyzed that living services such as used car service procurement and education are needed, and the southern living area needs a mid- and high-vehicle service delivery system in Ungcheon-eup. It is believed that this study can provide important clues to the classification of central functional facilities suitable for rural centers, reinforcement of vulnerable functional facilities by living area, and provision of living services.

Cost Function of Congestion-Prone Transportation Systems (혼잡현상을 갖는 교통체계의 비용함수)

  • Mun, Dong-Ju;Kim, Hong-Bae
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.6
    • /
    • pp.209-230
    • /
    • 2007
  • This paper analyzed the social cost function of a congestion-prone service system, which is developed from the social cost minimization problem. The analysis focused on the following two issues that have not been explicitly explored in the previous studies: the effect of the heterogeneity of value-of-travel-times among customers on the structure of cost functions; and the structure of the supplier cost function constituting the social cost function. The analysis gave a number of findings that could be summarized as follows. First, the social marginal cost for one unit increase in system output having a certain value-of-travel-time is the sum of the service time cost for that value-of-travel-time and the marginal congestion cost for the average value-of-service-time of all the system outputs. Second, the marginal congestion cost equals the marginal supplier cost of system output under the condition that supplier compensates the customers for the changed service time costs which is incurred by the marginal capacity increase necessary for economically facilitating an additional system output. Third, the compensated marginal cost is the multiple of the marginal capacity cost and the inverse of system utilization ratio, if the service time function is homogeneous of degree zero in its inputs.

Closed-Form Green's Function for the Analysis of Microstrip Structure (마이크로스트립 구조 해석을 위한 Closed-Form 그린 함수)

  • Yang, Seung-Woo;Kim, Sung-Jin;Kim, Gun-Woo;Lee, Taek-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.281-293
    • /
    • 2008
  • In the layered medium, the Sommerfeld integral must be evaluated to calculate a space domain Green's function. The real axis integration method provides stable and accurate results over wide ranges of the observation distance and the singnal frequency. But this method has the in efficiency of approximation when the field point z is changed. Also, as the amplitude of z increases, the change of the spectral domain function is more rapidly. Therefore, the approximation is difficult when z becomes larger. In this paper, we propose a method to calculate an accurate closed-form Green's function for microstrip structure by using the closed-loop integration path.

A Condition Processing System of Active Rules Using Analyzing Condition Predicates (조건 술어 분석을 이용한 능동규칙의 조건부 처리 시스템)

  • Lee, Gi-Uk;Kim, Tae-Sik
    • The KIPS Transactions:PartD
    • /
    • v.9D no.1
    • /
    • pp.21-30
    • /
    • 2002
  • The active database system introduces the active rules detecting specified state. As the condition evaluation of the active rules is performed every time an event occurs, the performance of the system has a great influence, depending on the conditions processing method. In this paper, we propose the conditions processing system with the preprocessor which determines the delta tree structure, constructs the classification tree, and generates the aggregate function table. Due to the characteristics of the active database through which the active rules can be comprehended beforehand, the preprocessor can be introduced. In this paper, the delta tree which can effectively process the join, selection operations, and the aggregate function is suggested, and it can enhance the condition evaluation performance. And we propose the classification tree which effectively processes the join operation and the aggregate function table processing the aggregate function which demands high cost. In this paper, the conditions processing system can be expected to enhance the performance of conditions processing in the active rules as the number of conditions comparison decreases because of the structure which is made in the preprocessor.

An efficient machine learning for digital data using a cost function and parameters (비용함수와 파라미터를 이용한 효과적인 디지털 데이터 기계학습 방법론)

  • Ji, Sangmin;Park, Jieun
    • Journal of Digital Convergence
    • /
    • v.19 no.10
    • /
    • pp.253-263
    • /
    • 2021
  • Machine learning is the process of constructing a cost function using learning data used for learning and an artificial neural network to predict the data, and finding parameters that minimize the cost function. Parameters are changed by using the gradient-based method of the cost function. The more complex the digital signal and the more complex the problem to be learned, the more complex and deeper the structure of the artificial neural network. Such a complex and deep neural network structure can cause over-fitting problems. In order to avoid over-fitting, a weight decay regularization method of parameters is used. We additionally use the value of the cost function in this method. In this way, the accuracy of machine learning is improved, and the superiority is confirmed through numerical experiments. These results derive accurate values for a wide range of artificial intelligence data through machine learning.

High Resolution Radar Model to Simulate Detection/Tracking Performance of Multi-Function Radar in War Game Simulator (통합 교전 시뮬레이터 환경에서 다기능 레이다 탐지/추적 성능 모의를 위한 고해상도 레이다 모델)

  • Rim, Jae-Won;Oh, Suhyun;Koh, Il-Suek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.70-78
    • /
    • 2019
  • In this paper, modeling of a high-resolution multi-function radar is proposed to simulate radar performance in a war game simulator, called AddSIM. To incorporate the multi-function radar model into the AddSIM, the modeling must comprise a component-based structure consisting of physics, logics, and information blocks. Therefore, we assign the RF hardware of a RADAR as the physic block, a controller as the logics block, and the RF specifications of the RADAR as the information block. Detailed modeling of the physics and logics blocks are addressed, and data structure is also presented on an engineering level. On a multi-target engaged scenario, the performance of the multi-function radar is numerically analyzed and its validation is examined.