• 제목/요약/키워드: Structure function

검색결과 6,695건 처리시간 0.031초

APPROXIMATION OF RELIABILITY IMPORTANCE FOR CONTINUUM STRUCTURE FUNCTIONS

  • Lee, SeungMin;Kim, RakJoong
    • Korean Journal of Mathematics
    • /
    • 제5권1호
    • /
    • pp.55-60
    • /
    • 1997
  • A continuum structure function(CSF) is a non-decreasing mapping from the unit hypercube to the unit interval. The reliability importance of component $i$ in a CSF at system level ${\alpha}$, $R_i({\alpha})$) say, is zero if and only if component $i$ is almost irrelevant to the system at level ${\alpha}$. A condition to check whether a component is almost irrelevant to the system is presented. It is shown that $R^{(m)}_i({\alpha}){\rightarrow}R_i({\alpha})$ uniformly as $m{\rightarrow}{\infty}$ where each $R^{(m)}_i({\alpha})$ is readily calculated.

  • PDF

KTX 고장코드 수집 소프트웨어의 구조와 기능개선 (Structure and functional improvement of KTX DEP software)

  • 정성윤;김형인;정도원;조택선
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.952-963
    • /
    • 2008
  • The collection of KTX trainset fault code is made by DEP software. We can improve software function and update data after understanding DEP software function and software structure. For the improvement of trainset function and its performance, the same improvement of performance and structure change as DEP software, which collects and analyzes train's fault information, are required. Accordingly, we made a research for functional strucfure of KTX fault code collection software, STR3F, variable declaration through Script.rxr file and code analysis method and proceeded research for realizing more improved user environment of DEL software and fault analysis method.

  • PDF

웨이브릿 신경회로망의 프레임 함수를 이용한 지능시스템 (Intelligent system using frame function in wavelet neural network)

  • 홍석우;김용택;연정흠;전홍태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.195-198
    • /
    • 2000
  • We propose a new wavelet neural network structure, for which we apply new recurrent nodes to the network, in this paper for the dynamic system identification and control. We will construct the wavelet neural network by using wavelet frame function. The function does not have the best approximation property, but it may be possible to apply some modification to the structure of the network because the constriction of orthogonality is loosened a little. This wavelet neural network we propose can obtain previous state information by its structure of the network without any addition of input, though the conventional wavelet network needs additional previous state input for the improvement of the dynamic performance. In numerical experience, the performance of the new wavelet neural network we propose in the nonlinear system with uncertainity of parameter Is equal to that of the wavelet network which used the additional previous information input, superior to that of the conventional wavelet network.

  • PDF

Nano-Resolution Connectomics Using Large-Volume Electron Microscopy

  • Kim, Gyu Hyun;Gim, Ja Won;Lee, Kea Joo
    • Applied Microscopy
    • /
    • 제46권4호
    • /
    • pp.171-175
    • /
    • 2016
  • A distinctive neuronal network in the brain is believed to make us unique individuals. Electron microscopy is a valuable tool for examining ultrastructural characteristics of neurons, synapses, and subcellular organelles. A recent technological breakthrough in volume electron microscopy allows large-scale circuit reconstruction of the nervous system with unprecedented detail. Serial-section electron microscopy-previously the domain of specialists-became automated with the advent of innovative systems such as the focused ion beam and serial block-face scanning electron microscopes and the automated tape-collecting ultramicrotome. Further advances in microscopic design and instrumentation are also available, which allow the reconstruction of unprecedentedly large volumes of brain tissue at high speed. The recent introduction of correlative light and electron microscopy will help to identify specific neural circuits associated with behavioral characteristics and revolutionize our understanding of how the brain works.

강인성 제어 시스템과 구조 시스템의 통합 최적 설계 (Combined Design of Robust Control System and Structure System)

  • 박중현
    • 동력기계공학회지
    • /
    • 제7권4호
    • /
    • pp.38-43
    • /
    • 2003
  • This paper proposes an optimum design problem of structural and control systems. taking a 3-D truss structure as an example. The structure is supposed to be subjected to initial static loads and time-varying disturbances. The structure is controlled by a state feedback $H_{\infty}$ controller to suppress the effect of the disturbances. The design variables are the cross sectional areas of truss members. The structural objective function is the structural weight. As the control objective, we consider two types of performance indices. The first function represents the effect of the initial loads. The second one is the norm of the feedback gain. These objective functions are in conflict with each other. Then, first, two control objective functions are transformed into one control objective by the weighting method. Next, the structural objective is treated as the constraint. By introducing the second control objective which considers the magnitude of the feedback gain, we can per limn the design which is robust in modeling errors.

  • PDF

유연구조물의 최소중량설계에 관한 연구 (A Study on the Minimum Weight Design for Flexible Structure)

  • 박중현
    • 한국정밀공학회지
    • /
    • 제21권2호
    • /
    • pp.153-159
    • /
    • 2004
  • A control-structure combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider not only minimum weight design problem for structure system, but also suppression problem of the effect of disturbances for control system as the purpose of the design. By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken.

Prediction of Stand Structure Dynamics for Unthinned Slash Pine Plantations

  • Lee, Young-Jin;Cho, Hyun-Je;Hong, Sung-Cheon
    • The Korean Journal of Ecology
    • /
    • 제23권6호
    • /
    • pp.435-438
    • /
    • 2000
  • Diameter distributions describe forest stand structure information. Prediction equations for percentiles of diameter distribution and parameter recovery procedures for the Weibull distribution function based on four percentile equations were applied to develop prediction system of even-aged slash pine stand structure development in terms of the number of stems per diameter class changes. Four percentiles of the cumulative diameter distribution were predicted as a function of stand characteristics. The predicted diameter distributions were tested against the observed diameter distributions using the Kolmogorov-Smirnov two sample test at the ${\alpha}$=0.05 level. Statistically, no significant differences were detected based on the data from 236 evaluation data sets. This stand level diameter distribution prediction system will be useful in slash pine stand structure modeling and in updating forest inventories for the long-term forest management planning.

  • PDF

고무 알루미늄 적층 구조물의 유한요소 해석 (FEM Analysis of alternatively laminated structure constructed of rubber and reinforced aluminium layers)

  • 박성한;이방업;홍명표;류백능
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.402-406
    • /
    • 2000
  • Strain energy function of the isoprene rubber was accurately determined by the experiments of uniaxial tension, planar tension, biaxial tension and volumetric compression. Deformation behavior of alternatively laminated structure of elastomer and reinforced aluminium layers, was analysed by Finite Element method. As a result, Ogden strain energy function obtained from the experiments describes the hyperelastic characteristics of the rubber very well. The compressibility of the rubber reduces axial stiffness of the structure. The axial stiffness of alternatively laminated structure being larger than shear stiffness. Which enables the structure to be shear-deformed easily.

  • PDF

2차원 트러스 구조물에 대한 제어/구조 시스템의 동시최적설계 (Simultaneous Optimal Design of Control-Structure Systems for 2-D Truss Structure)

  • 박중현;김순호
    • 제어로봇시스템학회논문지
    • /
    • 제7권10호
    • /
    • pp.812-818
    • /
    • 2001
  • This paper proposes an optimum design method of structural and control systems, taking a 2-D truss structure as an example. The structure is supposed to be subjected to initial static loads and disturbances. For the structure, a FEM model is formed, and using modal transformation, the equation of motion is transformed into that of modal coordinates in order to reduce the D.O.F. of the FEM model. The structure is controlled by an output feedback $H^$\infty$$ controller to suppress the effect of the disturbances. The design variables of the simultaneous optimal design of control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H^$\infty$$ norm, that is, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been carried out. Through the consideration of structural weight and $H^$\infty$$ norm, an advantage of the simultaneous optimum design of structural and control systems is shown. Moreover, while the optimized performance index of control is almost kept, we can acquire better design of structural strength.

  • PDF