• 제목/요약/키워드: Structure family Evolution

검색결과 27건 처리시간 0.027초

Biological Network Evolution Hypothesis Applied to Protein Structural Interactome

  • Bolser, Dan M.;Park, Jong Hwa
    • Genomics & Informatics
    • /
    • 제1권1호
    • /
    • pp.7-19
    • /
    • 2003
  • The latest measure of the relative evolutionary age of protein structure families was applied (based on taxonomic diversity) using the protein structural interactome map (PSIMAP). It confirms that, in general, protein domains, which are hubs in this interaction network, are older than protein domains with fewer interaction partners. We apply a hypothesis of 'biological network evolution' to explain the positive correlation between interaction and age. It agrees to the previous suggestions that proteins have acquired an increasing number of interaction partners over time via the stepwise addition of new interactions. This hypothesis is shown to be consistent with the scale-free interaction network topologies proposed by other groups. Closely co-evolved structural interaction and the dynamics of network evolution are used to explain the highly conserved core of protein interaction pathways, which exist across all divisions of life.

Crystal structure and functional analysis of the surE protein identify a novel phosphatase family

  • Lee, Jae-Young;Kwak, Jae-Eun;Suh, Se-Won
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2001년도 학술 발표회 진행표 및 논문초록
    • /
    • pp.19-19
    • /
    • 2001
  • The genome sequencing has revealed a large number of proteins of unknown or little characterized functions that have been well conserved during evolution. It remains a great challenge to decipher the molecular and physiological functions of these proteins. One example of the evolutionarily conserved protein family with little understood function is the surE family.(omitted)

  • PDF

인간 내생 레토르바이러스 HERV-S의 LTR엘리먼트의 동정과 계통분류 (Identification and Phylogeny of Long Terminal Repeat Elements of Human Endogenous Retrovirus HERV-S)

  • 최주영;이주민;전승희;신경미;이지원;이원호;김희수
    • 생명과학회지
    • /
    • 제11권5호
    • /
    • pp.400-404
    • /
    • 2001
  • 최근 새로운 인간 내생 레트로바이러스 패밀리(HERAV-S)가 인간의 X 염색체상에서 동정 되었다. 그 길이는 6.7kb 이며 LTR-gag-pol-env-LTR의 일반적인 레트로바이러스의 구조를 가졌다. PCR 방법과 염기서열분석을 통하여 인간 게놈 DNA에서 HERV-S LTR 패밀리를 동정하였다. 네 개의 LTR엘리먼트(HSL-1, HSL-5, HSL-10, HSL-11)가 동정 되었으며, 이들은 HERV-S LLR 패밀리는 영장류의 진화과정에서 진화적인 분기를 통해 주된 2개의 그룹으로 나뉘어졌다. 영장류에서 이러한 HERV-S LTR들의 연구가 이루어진다면 이들의 영장류 게놈 내의 삽입시기를 알 수 있고 또한 인류의 진화를 이해하는데 크게 이바지 할 것이다.

  • PDF

Gene Structure and Phylogenetic Analysis of Cytohesin Family

  • Kim, Heui-Soo;Shin, Kyung-Mi;Lee, Ji-Won;Yi, Joo-Mi
    • Journal of Life Science
    • /
    • 제11권1호
    • /
    • pp.39-41
    • /
    • 2001
  • Cytohesin family has been thought to participate in inside-outside signaling linking growth factor receptor stimulation of PI 3-kinase to cell adhesion and stimulate nucleotide exchange of ARF through its Sec7 domain. The genomic structure of the cytohesin family was analyzed by BLAST search using cDNA and genomic DNA sequences from the GeneBank database. The cytohesin-2 was encoded by 12 exons. while the cytohesin-4 was encoded by 13 exons. The Sec7 and PH domains were not encoded by separate exons. In an analysis of retroviral integration, those two families did not contain any retroviral elements in introns or exons. The phylogenetic tree calculated by the neighbor-joining method suggests that the cytohesin-1 family was closely related to cytohesin-3 (ARNO3) family. These date could be of great use in further studies for resolving the exact function and evolution of the cytohesin family.

  • PDF

실고기목 어류 (Syngnathiformes)의 분자계통학적 분류 (Molecular Phylogeny of Syngnathiformes Fishes Inferred from Mitochondrial Cytochrome b DNA Sequences)

  • 고범석;송춘복
    • 한국수산과학회지
    • /
    • 제37권5호
    • /
    • pp.405-413
    • /
    • 2004
  • The previous morphology-based taxonomic frameworks within the family Syngnathidae had emphasized the significance of the male brood pouch and reproductive biology in defining the group. However, several different hypotheses had been proposed by different investigators. This study has been carried out to determine the phylogenetic relationships among 19 species belonging to the order Syngnathiformes with three Gasterosteiformes species as outgroup taxa by using the mitochondrial cytochrome b DNA sequences. Phylogenetic analyses based on neighbor-joining distance, maximum parsimony, minimum evolution and maximum likelihood method strongly supported that the family Syngnathidae, the suborder Syngnathoidei and the order Syngnathiformes were all monophyletic group. Although much of previous morphological analyses were supported by our molecular data, there were some significant discrepancies between molecular and morphological work. Such an interesting result was that the weedy seadragon (Phyllopteryx taeniolatus) strongly grouped together with the New Zealand pot-belly seahorse (Hippocampus abdominalis). Considering the markedly different brooding structure between them, this unexpected result might be explained whether by multiple independent origins of brooding structure or by hybridization between the female Hippocampus and other syngnathid species having individual membranous egg compartment. In addition, the suborder Aulostomoidei was paraphyletic group because the shrimpfish (Aeliscus strigatus), belonging to the family Centriscidae, always grouped together with the family Syngnathidae as a sister taxon.

Molecular divergence of the fish somatomedins: the single family of insulin­like growth factor (IGF)-I and -II from the teleost, flounder

  • Kim Dong Soo;Kim Young Tae
    • Fisheries and Aquatic Sciences
    • /
    • 제1권2호
    • /
    • pp.227-231
    • /
    • 1998
  • The teleosts represent ancient real-bony vertebrates in phylogeny and resemble major genetic patterns to higher vertebrates. In the present study, we have defined the single family of insulin-like growth factors (IGFs) from flounder (Paralichthys olivaceus), compared to the prototype of IGFs observed in the Agnathan hagfish. In flounder, IGFs are clearly diverged into two major types including type I and II, and they are structurally similar by displaying a multidomain structure consisting of five functional regions as previously found in other vertebrates. However, flIGF-I appears to be more basic (pI 8.03) than the flIGF-II (pI 5.34) in the fully processed form for the B to D domain region. The flIGF-I seems to contain an evolutionary conserved Asn-linked glycosylation in E domain, which is not found in flIGF­II. The most interesting feature is that flIGF-II appeared to be structurally close to hagfish IGF in secondary structures, particularly in Band D domains. This could tell us an idea on the molecular divergence of IGFs from the Agnatha to teleosts during the vertebrate phylogeny. It also support, in part, a notion regarding on how IGF-II is appeared as more embryonic during development. Nonetheless, the biologically active B to D domain region of flIGF-II shows significant sequence homology of $65.6\%$ to flIGF-Is and contains the evolutionary conserved insulin-family signature, as well as a reserved recognition site (Lys) in D domain, necessary to generate proteolytic cleavage for E-peptide. A significant structural difference was found in E domain in which flIGF-I possesses two potential alternative splicing donor site at $Val^{17,\;24}$ of E domain. Therefore, it seems so far that IGF-I sorely produces spliced variants due to the spliced E-peptide moiety while IGF-II appears to be maintained in a single type during evolution. IGF-II, however, may be also possible to transcribe unidentified variants, depending on the physiological conditions of tissues in vertebrates in vivo.

  • PDF

Genomic Features of Retroelements and Implications for Human Disease

  • Kim, Heui-Soo
    • Genomics & Informatics
    • /
    • 제3권4호
    • /
    • pp.133-141
    • /
    • 2005
  • Most of the endogenous retroviral genes integrated into the primate genome after the split of New World monkeys in the Oligocene era, approximately 33 million years ago. Because they can change the structure of adjacent genes and move between and within chromosomes they may play important roles in evolutionas well as in many kinds of disease and the creation of genetic polymorphism. Comparative analysis of HERVs (human endogenous retroviruses) and their LTR (long terminal repeat) elements in the primate genomes will help us to understand the possible impact of HERV elements in the evolution and phylogeny of primates. For example, HERV-K LTR and SINE-R elements have been identified that have been subject to recent change in the course of primate evolution. They are specific elements to the human genome and could be related to biological function. The HERV-M element is related to the superfamily of HERV-K and is integrated into the periphilin gene as the truncated form, 5'LTR-gag-pol-3'LTR. PCR and RT-PCR approaches indicated that the insertion of various retrotransposable elements in a common ancestor genome may make different transcript variants in different primate species. Examination of the HERV-W elementrevealed that env fragments were detected on human chromosomes 1, 3-7, 12, 14, 17, 20, and X, whilst the pol fragments were detected on human chromosomes 2-8, 10-15, 20, 21, X, and Y. Bioinformatic blast search showed that almost full-length of the HERV-W family was identified on human chromosomes 1-8, 11-15, 17, 18, 21, and X. Expression analysis of HERV-W genes (gag, pol, and env) in human tissues by RT-PCR indicated that gag and pol were expressed in specific tissues, whilst env was constituitively expressed in all tissues examined. DNA sequence based phylogenetic analysis indicated that the gag, pol and env genes have evolved independently during primate evolution. It will thus be of considerable interest to expand the current HERV gene information of various primates and disease tissues.

Crystal Structure of Histidine Triad Nucleotide-Binding Protein from the Pathogenic Fungus Candida albicans

  • Jung, Ahjin;Yun, Ji-Sook;Kim, Shinae;Kim, Sang Ryong;Shin, Minsang;Cho, Dong Hyung;Choi, Kwang Shik;Chang, Jeong Ho
    • Molecules and Cells
    • /
    • 제42권1호
    • /
    • pp.56-66
    • /
    • 2019
  • Histidine triad nucleotide-binding protein (HINT) is a member of the histidine triad (HIT) superfamily, which has hydrolase activity owing to a histidine triad motif. The HIT superfamily can be divided to five classes with functions in galactose metabolism, DNA repair, and tumor suppression. HINTs are highly conserved from archaea to humans and function as tumor suppressors, translation regulators, and neuropathy inhibitors. Although the structures of HINT proteins from various species have been reported, limited structural information is available for fungal species. Here, to elucidate the structural features and functional diversity of HINTs, we determined the crystal structure of HINT from the pathogenic fungus Candida albicans (CaHINT) in complex with zinc ions at a resolution of $2.5{\AA}$. Based on structural comparisons, the monomer of CaHINT overlaid best with HINT protein from the protozoal species Leishmania major. Additionally, structural comparisons with human HINT revealed an additional helix at the C-terminus of CaHINT. Interestingly, the extended C-terminal helix interacted with the N-terminal loop (${\alpha}1-{\beta}1$) and with the ${\alpha}3$ helix, which appeared to stabilize the dimerization of CaHINT. In the C-terminal region, structural and sequence comparisons showed strong relationships among 19 diverse species from archea to humans, suggesting early separation in the course of evolution. Further studies are required to address the functional significance of variations in the C-terminal region. This structural analysis of CaHINT provided important insights into the molecular aspects of evolution within the HIT superfamily.

Alu 서열과 분자생물학적 특징 (Alu sequences and molecular features)

  • 박은실;홍경원;김희수
    • 생명과학회지
    • /
    • 제14권6호
    • /
    • pp.1028-1039
    • /
    • 2004
  • 6500만년동안, Alu 서열은 RNA-중합효소 III에 의한 전사체를 통해 증폭해왔고, 영장류 게놈 내에 약 140만 복사의 수에 도달되었다. 그들은 가동성 인자 중에서 가장 큰 집단이며, 인간 게놈의 $10\%$를 구성한다. Alu 서열이 유전적으로 기능이 없다고 생각되었지만, 최근 많은 연구자들이 새로운 기능 및 질병과의 관련성을 증명해왔다 이들 Alu 서열은 삽입돌연변이, Alu-매개 재조합, 유전자 발현에 대해 유전자 전환 그리고 스플라이싱 사이트를 유발하고, 유전자 구조, 단백질 서열, 스플라이싱 모티프와 발현 양상에 영향을 준다. 우리는 Alu의 구조와 기원, 그들 패밀리의 컨센서스 서열, Alu의 진화와 분포 그리고 그들의 기능에 대하여 요약 정리하였다. 또한 영장류의 진화과정에 있어 질병과 관련하여 Alu 패밀리의 새로운 연구방향을 제시하였다.

Genomic Sequence Analysis and Organization of BmKαTx11 and BmKαTx15 from Buthus martensii Karsch: Molecular Evolution of α-toxin genes

  • Xu, Xiuling;Cao, Zhijian;Sheng, Jiqun;Wu, Wenlan;Luo, Feng;Sha, Yonggang;Mao, Xin;Liu, Hui;Jiang, Dahe;Li, Wenxin
    • BMB Reports
    • /
    • 제38권4호
    • /
    • pp.386-390
    • /
    • 2005
  • Based on the reported cDNA sequences of $BmK{\alpha}Txs$, the genes encoding toxin $BmK{\alpha}Tx11$ and $BmK{\alpha}Tx15$ were amplified by PCR from the Chinese scorpion Buthus martensii Karsch genomic DNA employing synthetic oligonucleotides. Sequences analysis of nucleotide showed that an intron about 500 bp length interrupts signal peptide coding regions of $BmK{\alpha}Tx11$ and $BmK{\alpha}Tx15$. Using cDNA sequence of $BmK{\alpha}Tx11$ as probe, southern hybridization of BmK genome total DNA was performed. The result indicates that $BmK{\alpha}Tx11$ is multicopy genes or belongs to multiple gene family with high homology genes. The similarity of $BmK{\alpha}$-toxin gene sequences and southern hybridization revealed the evolution trace of $BmK{\alpha}$-toxins: $BmK{\alpha}$-toxin genes evolve from a common progenitor, and the genes diversity is associated with a process of locus duplication and gene divergence.