DOI QR코드

DOI QR Code

Molecular Phylogeny of Syngnathiformes Fishes Inferred from Mitochondrial Cytochrome b DNA Sequences

실고기목 어류 (Syngnathiformes)의 분자계통학적 분류

  • KOH Beom Seok (Department of Marine Biotechnology, College of Ocean Science, Cheju National University) ;
  • SONG Choon Bok (Department of Marine Biotechnology, College of Ocean Science, Cheju National University)
  • 고범석 (제주대학교 해양과학부 해양생물공학과) ;
  • 송춘복 (제주대학교 해양과학부 해양생물공학과)
  • Published : 2004.10.01

Abstract

The previous morphology-based taxonomic frameworks within the family Syngnathidae had emphasized the significance of the male brood pouch and reproductive biology in defining the group. However, several different hypotheses had been proposed by different investigators. This study has been carried out to determine the phylogenetic relationships among 19 species belonging to the order Syngnathiformes with three Gasterosteiformes species as outgroup taxa by using the mitochondrial cytochrome b DNA sequences. Phylogenetic analyses based on neighbor-joining distance, maximum parsimony, minimum evolution and maximum likelihood method strongly supported that the family Syngnathidae, the suborder Syngnathoidei and the order Syngnathiformes were all monophyletic group. Although much of previous morphological analyses were supported by our molecular data, there were some significant discrepancies between molecular and morphological work. Such an interesting result was that the weedy seadragon (Phyllopteryx taeniolatus) strongly grouped together with the New Zealand pot-belly seahorse (Hippocampus abdominalis). Considering the markedly different brooding structure between them, this unexpected result might be explained whether by multiple independent origins of brooding structure or by hybridization between the female Hippocampus and other syngnathid species having individual membranous egg compartment. In addition, the suborder Aulostomoidei was paraphyletic group because the shrimpfish (Aeliscus strigatus), belonging to the family Centriscidae, always grouped together with the family Syngnathidae as a sister taxon.

Keywords

References

  1. Allegrucci, G., A. Caccone and V. Sbordoni. 1999. Cytochrome b sequence divergence in the European sea bass (Dicentrachus lavrax) and phylogenetic relationship among some Perciformes species. J. Zool. Syst. Evol. Res., 37, 149-156
  2. Anderson, S., A.T. Bankier, B.G. Barrell, M.H.L. de Bruijin, A.R. Colulson, J. Drouin, I.C. Eperon, D.P. Nierlich, B.A. Roe, F. Sanger, P.H. Schreier, A.J.H. Smith, R. Staden and I.G. Young. 1981. Sequence and organization of the human mitochondrial genome. Nature, 290, 457-465 https://doi.org/10.1038/290457a0
  3. Arnaud, S., F. Bonhomme and P. Borsa. 1999. Mitochondrial DNA analysis of the genetic relationships among populations of scad mackerel (Decapterusmaca rellus, D. macrosoma, and D. russelli) in South-East Asia. Mar. BioI., 135, 699-707 https://doi.org/10.1007/s002270050671
  4. Bickham, J.W., C.C. Wood and J.C. Patton. 1995. Biogeographic implications of cytochrome b sequences and allozymes in sockeyes (Oncorhynchus nerka). J. Hered., 86, 140-144 https://doi.org/10.1093/oxfordjournals.jhered.a111544
  5. Briolay, J., N. Galtier, R.M. Brito and Y. Bouvet. 1998. Molecular phylogeny of Cyprinidae inferred from cytochrome b DNA sequences. Mol. Phylogenet. Evol., 9(1), 100-108 https://doi.org/10.1006/mpev.1997.0441
  6. Bowen, B.W., A.L. Bass., L.A. Rocha, W.S. Grant and D.R. Robertson. 2001. Pylogeography of the trumpetfishes (Aulostomus): ring species complex on a global scale. Evolution, 55, 1029-1039 https://doi.org/10.1554/0014-3820(2001)055[1029:POTTAR]2.0.CO;2
  7. Cantatore, P., M. Roverti, G. Pesole, A. Ludovico, F. Mile1la, M.N. Gadaleta and C. Saccone. 1994. Evolutionary analysis of cytochrome b sequences in some perciformes: evidence for a slower rate of evolution than in mammals. J. Mol. Evol., 39, 589-597 https://doi.org/10.1007/BF00160404
  8. Carr, S.M. and H.D. Marshall. 1991. Detection of intraspecific DNA sequence variation in the mitochondrial cytochrome b gene of Atlantic cod (Gadus morhua) by the polymerase chain reaction. Can. J Fish. Aquat. Sci., 48, 48-52 https://doi.org/10.1139/f91-007
  9. Casey, S.P. 1999. A phylogenetic study of seahorses using the cytochrome b gene of mitochondrial DNA. Ph.D. Thesis, Institute of Zoology, London
  10. Colborn, J., R.E. Crabtree, J.B. Shaklee, E. pfeiler and B.W. Bowen. 2001. The evolutionary enigma of bonefishes (Albula spp.): cryptic species and ancient separations in a globally distributed shorefish. Evolution, 55, 807-820 https://doi.org/10.1554/0014-3820(2001)055[0807:TEEOBA]2.0.CO;2
  11. Dawson, C.E. 1985. Indo-Pacific pipefishes, Mississippi, USA: The Gulf Coast Research Library
  12. Duncker, G. 1915. Revision der Syngnathidae. Mitt. Hamb. Zool. Mus. Inst., 32, 9-120
  13. Eschmeyer, W.N. 1998. Catalog of Fishes. California Academy of Sciences, San Francisco, Vols. 1-3
  14. Esposti, M.D., S.D. Vries, M. Crimi, A. Ghelli, T. Patarnello and A. Meyer. 1993. Mitochondrial cytochrome b: evolution and structure of the protein. Biochim. Biophys. Acta, 1143, 243-271 https://doi.org/10.1016/0005-2728(93)90197-N
  15. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4), 783-791 https://doi.org/10.2307/2408678
  16. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool., 20, 406-416 https://doi.org/10.2307/2412116
  17. Gilles, A., A. MiqueIis, J.P. Quignard and E. Faure. 2000. Molecular phylogeography of western Mediterranean dusky grouper Epinephelus marginatus. C.R. Acad. Sci. Paris, Sciences de la Vie - Life Sciences, 323, 195-205
  18. Herald, E.S. 1959. From pipefish to seahorse a study of phylogenetic relationships. Proc. Calif. Acad. Sci., 29, 465-473
  19. Irwin, D.M., T.D. Kocher and A.C. Wilson. 1991. Evolution of the cytochrome b gene of mammals. J. Mol. Evol., 32, 128-144 https://doi.org/10.1007/BF02515385
  20. Johns, G.C. and J.C. Avise. 1998. A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Mol. BioI. Evol., 15 (11), 1481-1490 https://doi.org/10.1093/oxfordjournals.molbev.a025875
  21. Kendrick, A.J. and G.A. Hyndes. 2002. Patterns in the abundance and size-distribution of syngnathid fishes among habitats in a seagrass-dominated marine environment. Estuar. Coast. Shelf Sci., 57, 631-640
  22. Knowlton, N. 1993. Sibling species in the sea. Ann. Rev. Eco. System., 24, 189-216 https://doi.org/10.1146/annurev.es.24.110193.001201
  23. Kocher, T.D., W.K. Thomas, A. Meyer, S.V. Edwards, S. Paabo, F.X. Villablanca and A.C. Wilson. 1989
  24. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. U.S.A., 86, 6196-6200 https://doi.org/10.1073/pnas.86.16.6196
  25. Kocher, T. D. and C.A. Stepien. 1997. Molecular Systematics of Fishes, Academic Press, New York, pp. 314
  26. Kuiter, R.H. 2000. Seahorses, Pipefishes and Realatives - A Comprehensive Guide to Syngnathiformes, TMC Pub., Chorleywood, UK
  27. Kumar, S., K. Tamura, I.B. Jakobsen and M. Nei. 2001. MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics, 17(2), 1244-1245 https://doi.org/10.1093/bioinformatics/17.12.1244
  28. Lourie, S.A., A.C.J. Vincent and H.J. Hall. 1999. Seahorses: an identification guide to the world's species and their conservation. London: Project Seahorse
  29. Meyer, A. 1993. Evolution of mitochondrial DNA in fishes. In: Molecular Biology Frontiers, Biochemistry and Molecular Biology of Fishes, Hochachka, P.W. and T.P. Mommsen, eds. Elsevier Science Publishers. AM., 2, pp. 470
  30. Nei, M. and S. Kumar. 2000. Molecular Evolution and Phylogenetics, Oxford University Press. New York, pp. 333
  31. Patterton, H.G. and S. Graves. 2000. DNAssist: The integrated editing and analysis of moecular biology sequences in windows. Bioinformatics, 16(7), 652-653 https://doi.org/10.1093/bioinformatics/16.7.652
  32. Peter, R.T., I.C. Michael and A.M. Conrad. 2004. The evolutionary history of seahorses (Syngnathidae: Hippocampus): molecular data suggest a West Pacific origin and two invasions of the Atlantic Ocean. Mol. Phylogent. Evol., 30(2), 273-286 https://doi.org/10.1016/S1055-7903(03)00214-8
  33. Posada, D. and K.A. Crandall. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14(9), 817-818 https://doi.org/10.1093/bioinformatics/14.9.817
  34. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. BioI. Evol., 4(4), 406-425
  35. Song, C.R., T.J. Near and L.M. Page. 1998. Phylogenetic relations among percid fishes as inferred from mitochondrial cytochrome b DNA sequence data. Mol. Phylogenet. Evol., 10(3), 343-353 https://doi.org/10.1006/mpev.1998.0542
  36. Swofford, D.L. 1998. PAUP: phylogenetic analysis using parsimony, version 4.0b8, Sinauer Associates, Sunderland, MA
  37. Takezaki, N. and T. Gojobori. 1999. Correct and incorrect vertebrate phylogenies obtained by the entire mitochondrial DNA sequences. Mol. BioI. Evol., 16(5), 590-601 https://doi.org/10.1093/oxfordjournals.molbev.a026141
  38. Wilson, A.B., A. Vincent, I. Ahnesjo and A. Meyer. 2001. Male pregnancy in seahorses and pipefishes (family Syngnathidae): rapid diversification of paternal brood pouch morphology inferred from a molecular phylogeny. The American Genetic Association, 92, 159-166
  39. Wootton, R.J. 1992. A Functional Biology of Sicklebacks, University of California Press